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CHAPTER 8

The Analysis of
Variance

8.1 INTRODUCTION AND USE

This chapter deals with an entire class of problems in tests of the equality
of a set of k population means, where k equals two or more. The methods
of this chapter can also be used for tests of the equality of sets of mean
differences, as in tests of interactions. The test statistic is the F ratio, and
the model is that of the test on means of “fixed effect ” variates in the analysis
of variance and covariance (Edwards, 1972; Winer, 1971; Hays, 1981). Iniits
simplest form, it is a “one-way” (** randomized groups”’) design with equal
n in each sample. The power and sample size tables in this chapter are de-
signed for greatest simplicity in these applications (Case 0). More complicated
designs involving fixed effects can also be power-analyzed with the help of
these tables, as will be described below. In all cases, however, the null
hypothesis states that the means or mean difference of specified (*“fixed”)
populations are equal, or, equivalently, that “effects” defined as linear
functions of means are all zero. Section 8.3.5 shows how power analysis
on various tests of means, which will have been described in the context of
the analysis of variance, can be performed in analogous analysis of co-
variance designs.

The tests here can be viewed as extensions of the tests of Chapter 2,
where only two fixed population means are involved. Or, conversely, the
t test on two means is, in fact, merely a special case of the F test on k means
where k=2, as is detailed in most statistics textbooks. As such, the same
formal model assumptions are made: that the values in the k populations
are normally distributed and have the same variance, o°. It is, however, well
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274 8 F TESTS ON MEANS IN THE ANALYSIS OF VARIANCE AND COVARIANCE

established that moderate violations of these ‘assumptions have generally
negligible effects on the validity of null hypothesis tests and power analyses.
For evidence on the issue of the “robustness” of F tests with regard to both
Type I and Type 1l error in the face of assumption violation, see Scheffé
(1959, Chapter 10), and for a less technical summary, Cohen (1965, pp.
114-116).! Note that no assumption is made about the distribution of the k
population means for fixed effects.

The F test on means for fixed effects can occur under a variety of circum-
stances for which the tables in this chapter may be used:

Case 0. One-way analysis of variance with n’s equal. This is the simplest
design, where without other considerations; one compares k means based
on samples of equal size.

Case 1. One-way analysis of variance with unequal n’s,
Case 2. Tests of main effects in factorial and other complex designs.
Case 3. Tests of interactions in factorial designs.

Analysis of Covariance. Each of the above cases has its analog in the
analysis of covariance.

8.2 Tue Errect Size Inpex: f

Our need for a pure number to index the degree of departure from no
effect (i.e., k equal population means) is here satisfied in a way related to
the solution in Chapter 2, where there were only two means. Recall that the
difference in means was “standardized” by dividing it by the (common)
within-population standard deviation, i.e.,

Q.2.1) d— T "Mz
g

Since both numerator and denominator are expressed in the (frequently
arbitrary) original unit of measurement, their ratio, d, is a pure or dimen-
sionless number. ’

With k>2 means such as we deal with here, we represent the spread
of the means not by their range as above (except secondarily, see below),
but by a quantity formally like a standard deviation, again dividing by the
common standard deviation of the populations involved. It is thus

! Budescu and Applebaum (1981) have shown that when the F test is applied to samples
from binomial and Poisson population distributions, the use of variance stabilizing transfor-
mations results in little change in significance level or, in most casés, power. Budescu (1982) re-
ported that for normally distributed populations with heterogeneous variances, substituting for
o in the denominator of Equation (8.2.1) the square root of the n;-weighted population variance
results in good power approximations.

Also, Koele (1982) shows how to calculate power for random and mixed models, and dem-
onstrates that they have much lower power than that for fixed effects. Barcikowski (1973) pro-
vides tables for optimum sample size/number of levels for the random effects model.
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(8.2.1) fz Im
where, for equal n (Cases 0 and 2),

(8.2.2) Oy =

the standard deviation of the population means expressed in original scale
units. The values in the parentheses are the departures of the population
means (m;) from the mean of the combined populations or the mean of
the means for equal sample sizes (m), and are sometimes called the (fixed)
““effects”; the o’s of formulas (8.2.1) and (2.2.1) are the same, the standard
deviation within the populations, also expressed in original scale units. f is
thus also a pure number, the standard deviation of the standardized means.
That is to say that if all the values in the combined populations were to be
converted into z “standard > scores (Hays, 1973, p. 250f), using the within-

population standard deviation, f is the standard deviation of these k mean z

scores.

f can take on values between zero, when the population means are all
equal (or the effects are all zero), and an indefinitely large number as o,
increases relative to o.

The structure of F ratio tests on means, hence the index f, is *“naturally”
nondirectional (as was the index w of the preceding chapter). Only when
there are two population means are there only two directions in which
discrepancies between null and alternative hypotheses can occur. With
k > 2 means, departures can occur in many “directions.” The result of all
these departures from the null are included in the upper tail rejection region,
and, as normally used, F tests do not discriminate among these and are
therefore nondirectional.

f is related to an index ¢ used in standard treatments of power,2 nomo-
graphs for which are widely reprinted in statistical testbooks (e.g., Winer,
1971; Scheflé, 1959) and books of tables (Owen, 1962). ¢ standardizes by the
standard error of the sample mean and is thus (in part) a function of the size
of each sample, n, while f is solely a descriptor of the population. Their rela-
tionship is given by

_ ¢
(8.2.3) f= e
or
(8.2.4) = fvn

2 This use of the symbol ¢ is not to be confused with its other uses in the text, as the
fourfold-point product-moment correlation in Chapter 7 or as the arcsine transformation
of a proportion in Chapter 6.
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The above description has, for the sake of simplicity, proceeded on the
assumption that the sizes of the k samples are all the same. No change in
the basic conception of f takes place when we use it to index the effect
size for tests on means of samples of unequal size (Case 1) or as an ES
measure for tests on interactions (Case 3). In these applications, the defini-
tion of f as the ‘““standard deviation of standardized means” requires some
further elaboration, which is left to the sections concerned with these cases.

The remainder of this section provides systems for the translation of
f into (a) a range measure, d, and (b) correlation ratio and variance propor-
tion measures, and offers operational definitions of “small,” ““medium,”
and “large” ES. Here, too, the exposition proceeds on the assumption of
equaln per sample and is appropriate to the F test on means (Cases 0 and 2).
In later discussion of Cases 1 and 3, qualifications will be offered, as necessary.

8.2.1 f AND THE STANDARDIZED RANGE OF POPULATION MEANS, d. Al-
though our primary ES index is f, the standard deviation of the standardized
k population means, it may facilitate the use and understanding of this
index to translate it to and from d, the range of standardized means, i.e., the
distance between the smallest and largest of the k means:

(8.2.5) d= DT Mmin
g
where m,,,, = the largest of the k means,
m, .. = the smallest of the k means, and
o =the (common) standard deviation within the populations
(as before).

Notice that in the case of k = 2 means (n equal), the d of (8.2.5.) becomes
the d used as the ES index for the t test of Chapter 2. The relationship be-
tween f and d for 2 means is simply

(8.2.6) f=1d,

i.e., the standard deviation of two values is simply half their difference,
and therefore

(8.2.7) d = f.

As the number of means increases beyond two, the relationship between
their standard deviation (f) and their range (d) depends upon exactly how
the means are dispersed over their range. With k means, two (the largest and
smallest) define d, but then the remaining k — 2 may fall variously over the
d interval; thus, f is not uniquely determined without further specification
of the pattern of separation of the means. We will identify three patterns

(8.2.8) fi=d [—
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and describe the relationship each one has to f, which is also, in general, a
function of the number of means. The patterns are:

I. Minimum variability: one mean at each end of d, the remaining
k — 2 means all at the midpoint.

2. Intermediate variability: the k means equally spaced over d.

3. Maximum variability: the means all at the end points of d.

For each of these patterns, there is a fixed relationship between f and
d for any given number of means, k.

Pattern 1. For any given range of means, d, the minimum standard
deviation, f,, results when the remaining k — 2 means are concentrated at
the mean of the means (0 when expressed in standard units), i.e., half-way
between the largest and smallest. For Pattern 1,

1
2k

gives the value of f for k means when the range d is specified. For example,
7 (=k) means dispersed in Pattern I would have the (standardized) values
—1d,0,0,0, 0,0, + 4d. Their standard deviation would be

f,=d 2—(17—) = v/.071429 = .267d,
slightly more than one-quarter of the range. Thus, a set of 7 population
means spanning half a within-population standard deviation would have
f=.267(.5)=.13.
The above gives f as a function of d. The reciprocal relationship is
required to determine what value of the range is implied by any given (e.g.,
tabled) value of f when Pattern 1 holds, and is

(8.2.9) d, = fV2k.

For example, for the 7 (= k) means dispersed in Pattern 1 above, their range
would be

d, = fV2(7) = V14 = 3.74f.

A value of f= .50 for these means would thus imply a standardized range
of 3.74(.50) = 1.87.

For the convenience of the user of this handbook, Table 8.2.1 gives the
constants (c and b) relating f to d for this pattern and the others discussed
below for k = 2(1) 16, 25, covering the power and sample size tables provided.
Their use is illustrated later in the chapter.
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Table 8.2.1
Constants for Transforming d to fi and f to dj for Patterns j=1,2,3

f,=cd d =bf
k <y C, Cy b, b, b,
2 500 500  .500 200 200 200
3 408 .408 AT 245 245 212
4 354 373 500 283 268 200
5 316 354 .490 316 283 204
6 289 342 500 346 293 200
7 267 333 .495 374 300 202
8 250 327 500 400 306  2.00
9 236 .323 497 424 310 2.0
10 224 319 500 447 313 200
1 213 316 498 469 316 201
12 204 314 500 490 318 2.00
13 196 312 499 510 321 201
14 189 © 310 500 529 322 200
15 183 309 499 548 324 200
16 177 307 500 566  .325  2.00
25 a41 300 500 707 301 200

Pattern 2. A pattern of medium variability results when the k means
are equally spaced over the range, and therefore at intervals of d/(k — I).
For Pattern 2, the f which results from any given range d is

d [k+1
(8.2.10) f, = E\/3('(_]).

For example, for k=7,

d [7+1 d\/?
f:——- —_— _—=, d
z 2\/3(7—1) AT Ikt

i.e., 7 equally spaced means would have the values — id, — id, — }d, 0, + id,
+3d, and + 1d, and a standard deviation equal to one-third of their range.

8.2 THE EFFECT SIZE INDEX: f 279

Note that this value for the same k is larger than f, = .267d for Pattern 1.
For a range of half a within-population standard deviation, f, = .333(.5) =
.17 (while comparably, f, =.13).

The reciprocal relationship for determining the range implied by a
tabled (or any other) value of f for Pattern 2 is

)
(8.2.11) d2_2f\/ T

For 7 means in Pattern 2, their range would be

3(7—1) \/ﬁ
d, =2f =2f [— =3f.
2 2\/7+1 g 3

Thus, a value of f=.50 for these equally spaced means would imply a
standardized range of 3(.50) = 1.50).

Table 8.2.1 gives the relevant constants (b, and ¢,) for varying k, making
the solution of formulas (8.2.10) and (8.2.11) generally unnecessary.

Pattern 3. It is demonstrable and intuitively evident that for any given
range the dispersion which yields the maximum standard deviation has the
k means falling at both extremes of the range. When k is even, 4k fall at
— id and the other }k fall at + }d; when k is odd, (k + 1)/2 of the means
fall at either end and the (k — 1)/2 remaining means at the other. With this
pattern, for all even numbers of means,

(8.2.12) f, = 3d.

When k is odd, and there is thus one more mean at one extreme than at
the other,
vk? -1

2. f,=d
(8.2.13) A o

For example, for k=7 means in Pattern 3 (4 means at either — }d or
+ 4d, 3 means at the other), their standard deviation is

V1IP-1_ V4
f,= d-———za—)* = d——]—i— .495d.

Note that f, is larger (for k=7) than f, =.333d and f, = .267d. If,
as before, we posit a range of half a within-population standard deviation,
fy = .495(.5) = .25.

The reciprocal relationship used to determine the range implied by a
given value of f when k is even is simply

(8.2.14) d, =2f,
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and when k is odd, ‘

2k
V-1

For the running example of k = 7 means, in Pattern 3 their range would
be

so that if we posit, as before, a value of f=.50, for these 7 extremely placed
means, d; = 2.02(.5)=1.01, i.e., slightly more than a within-population
standard deviation. '

As can be seen from Table 8.2.1, there is not as much variability as a
function of k in the relationship between f and d for Pattern 3 as for the
others. f, is either (for k even) exactly or (for k odd) approximately $d, the
minimum value being f; = .471d at k = 3.

This section has described and tabled the relationship between the
primary ES index for the F test, f, the standard deviation of standardized
means, and d, the standardized range of means, for three patterns of dis-
tribution of the k means. This makes it possible to use d as an alternate
index of effect size, or equivalently, to determine the d implied by tabled
or other values of f, and f implied by specified values of d. (The use of d
will be illustrated in the problems of Sections 8.3 and 8.4) The reader is
reminded that these relationships hold only for equal sample sizes (Cases
0 and 2).

8.2.2 f, THE CORRELATION RATIO, AND PROPORTION OF VARIANCE.
Expressing f in terms of d provides one useful perspective on the appraisal
of effect size with multiple means. Another frame of reference in which to
understand f is described in this section, namely, in terms of correlation
between population membership and the dependent variable, and in the
related terms of the proportion of the total variance (PV) of the k populations
combined which is accounted for by population membership.

Just as the d of this chapter is a generalization to k populations of the d
used as an ES index for t tests on two means of Chapter 2, so is 5 (eta),
the correlation ratio, a similar generalization of the Pearson r, and 7* a
generalization of r?, the proportion of variance (PV) accounted for by
population membership.

To understand 2, consider the set of k populations, all of the same
variance, o2, but each with its own mean, m;, The variance of the means
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0,42 is some quantity which differs from zero when the k means are not all
equal. If we square both sides of formula (8.2.1), we note that

O,
(8.2.16) f2= -ﬁ ,
is the ratio of the variance of the means to the variance of the values within
the populations.

Now consider that the populations are combined into a single “super-
population” whose mean is m (the mean of the population m;’s when the
populations are considered equally numerous; otherwise, their mean when
eachm, is weighted by its population size). The variance of the “superpopula-
tion,” or total variance (o), is larger than the within-population variance
because it is augmented by the variance of the constituent population means.
It is simply the sum of these two variances:

8.2.17) ol =0+,

We now define n? as the proportion of the total superpopulation variance
made up by the variance of the population means:

2
(8.2.18) =

The combination of this formula with formula (8.2.16) and some simple
algebraic manipulation yields

fZ
2 _
(8.2.19) alerw=2
and
fl
8.2.20 N= [—Fs.
( ) \/1 + f?

Thus, a simple function of f? yields 7%, a measure of dispersion of the
m, and hence of the implication of difference in population membership to
the overall variability. When the population means are all equal, o> and
hence f2 is zero, and »? = 0, indicating that none of the total variance is due
to difference in population membership. As formula (8.2.18) makes clear,
when all the cases in each population have the same value, o2 =0, and all
of the total variance is produced by the variance of the means, so that
72 = 1.00. Table 8.2.2 provides * and » values as a function of f.

Note that 5, like all measures of ES, describes a population state of
affairs. It can also be computed on samples and its population value esti-
mated therefrom. (See examples 8.17 and 8.19.) Depending on the basis
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of the estimation, the estimate is variously called %2, €2 (Peters and Van
Voorhis, 1940, pp. 312-325, 353-357; Cureton, 1966, pp. 605-607), or esti-
mated ® (Hays, 1981, pp. 349-366). In general, 5* is presented in applied
statistics textbooks only in connection with its use in the appraisal of the
curvilinear regression of Y on X, where the populations are defined by equal
segments along the X variable, and ¢, is the variance of the X-segments’ Y
means. Although this js a useful application of 7%, it is a rather limited special
case. For the broader view, see Hays (1973) (under w?), Cohen (1965, pp.
104-105), Cohen & Cohen (1983, pp. 196-198) and Friedman (1968, 1982).

n* is literally a generalization of the (point-biserial) r* of Chapter 2
which gives the PV for the case where there are k = 2 populations. It is pos-
sible to express the relationship between the dependent variable Y and
population membership X as a simple (i.e., zero-order) product moment r?,
when X is restricted to two possibilities, i.e., membership in A (X =0) or
membership in B (X = 1) (see Chapter 2). When we generalize X to represent
a nominal scale of k possible alternative population memberships, r* no
longer suffices, and the more general n? is used. It is interesting to note that
if k-population membership is rendered as a set of independent variables
(say, as dichotomous ‘‘dummy” variables), the simple r? generalizes to
multiple R?, which is demonstrably equal to 5 (see Section 9.2.1).

We have interpreted nzras the PV associated with alternative member-
ship in populations. A mathematically equivalent description of 72 proceeds
by the following contrast: Assume that we ““predict™ all the members of
our populations as having the same Y value, the m of our superpopulation.
The gross error of this “prediction” can be appraised by finding for each
subject the discrepancy between his value and m, squaring this value, and
adding such squared values over all subjects. Call this E,. Another “predic-
tion” can be made by assigning to each subject the mean of kis population,
m;. Again, we determine the discrepancy between his actual value and this
“prediction” {m;), square and total over all subjects from all populations.
Call this E,. To the extent to which the k population means are spread,
E, will be smaller than E,.

1

(8.2.21) I e S

i.e., the proportionate amount by which errors are reduced by using own
population mean (m;) rather than superpopulation mean (m) as a basis for
“prediction.” Or, we can view these as alternative means of characterizing
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the members of our populations, and 5> indexes the degree of increased
incisiveness that results from using the m; rather than m.

The discussion has thus far proceeded with 7%, the PV measure. For pur-
poses of morale, and to offer a scale which is comparable to that of the fa-
miliar product moment r, we can index ES by means of 5, the correlation ra-
tio, in addition to or instead of the lower value yielded by 5. As can be seen
from taking the square root in formula (8.2.18),, 5 is the ratio of the stand-
ard deviation of population means to the standard deviation of the values in
the superpopulation, i.e., the combined populations. Since standard devia-

Table 8.2.2

n?* and 7 as a Function of f; f as 2 Function of n* and

f 7’ n 7’ f n f

.05 0025 .050 .01 101 .05 .050
.10 .0099 100 .02 .143 .10 101
A5 .0220 148 .03 176 15 152
20 .0385 196 .04 204 20 .204
.25 .0588 243 | .05 229 25 258
.30 0826 .287 .06 .253 .30 314
35 .1091 .330 .07 274 .35 374
.40 1379 371 .08 .295 40 436
45 .1684 410 .09 314 .45 504
.50 .2000 447 10 .333 .50 577
55 2322 482 15 420 .55 .659
.60 ‘ 2647 514 .20 500 .60 .750
.65 2970 545 .25 577 .65 .865
70 .3289 573 .30 655 .70 .980
.75 .3600 .600 .40 .B16 .75 1.134
.80 3902 .625 50 1.000 .80 1.333
.85 4194 .648 .60 1.225 .85 1.614
90 | 4475 .669 .70 1.528 .90 2.065
.95 4744 .689 .80 2.000 .95 3.042

1.00 .5000 707 .90 3.000 1.00 -
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tions are as respectable as variances, no special apology is required in work-
ing with 5 rather than #°.

In formulas (8.2.19) and (8.2.20), we have % and 7 as functions of f.
This is useful for assessing the implication of a given value of f (in terms
of which our tables are organized) to PV or correlation. The reciprocal
relation, f as a function of 7, is also useful when the investigator, thinking
in PV or correlational terms, needs to determine the f they imply, e.g.,
in order to use the tables:

(8.2.22) f— \/ il

1—7]2

For the convenience of the user of this handbook, this formula is solved
for various values of 9 and 5* and the results presented in Table 8.2.2.

Table 8.2.2 deserves a moment’s attention. As discussed in the next
section and in Section 11.1 (and, indeed, as noted in previous chapters, par-
ticularly Chapter 3), effect sizes in behavioral science are generally small,
and, in terms of f, will generally be found in the .00-.40 range. With f small, f*
is smaller, and 1 + f, the denominator of 4 [formula (8.2.19)] is only
slightly greater than one. The result is that for small values of f such as are
typically encountered, 7 is approximately equal to f, being only slightly small-
er, and therefore %? is similarly only slightly smaller than f°. Thus, in the
range of our primary interest, f provides in itself an approximate correlation
measure, and 2 an approximate PV measure. For very large effect sizes, say f
> .40, fand y diverge too much for this rough and ready approximation, and
{2 and 5 even more so.

2

8.2.3 “SMALL,” “MEDIUM,” AND “LARGE” f VALUES. It has already
. been suggested that values of f as large as .50 are not common in behavioral
science, thus providing a prelude to the work of this section. Again, as in
previous chapters, we take on the task of helping the user of this hand-
book to achieve a workable frame of reference for the ES index or measure
of the alternate-hypothetical state of affairs, in this case f.

The optimal procedure for setting f in a given investigation is that the
investigator, drawing on previous findings and theory in that area and
his own scientific judgment, specify the k means and o he expects and com-
pute the resulting f from these values by means of formulas (8.2.1) and
(8.2.2). If this demand for specification is too strong, he may specify the
range of means, d, from formula (8.2.5), choose one of the patterns of mean
dispersion of Section 8.2.1, and use Table 8.2.1 to determine the implied
value of f. On the same footing as this procedure, which may be used instead
of or in conjunction with it, is positing the expected results in terms of the
proportion of total variance associated with membership in the k populations,
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i.e., 2. Formula (8.2.22) and Table 8.2.2 then provide the translation from
n? to f. (In the case of f for interactions, see Section 8.3.4.)

All the above procedures are characterized by their use of magnitudes
selected by the investigator to represent the situation of the specific research
he is planning. When experience with a given research area or variable
is insufficient to formulate alternative hypotheses as *‘strong” as these
procedures demand, and to serve as a set of conventions or operational
definitions, we define specific values of f for “small,” *“medium,” and “large”
effects. The reader is referred to Sections 1.4 and 2.2.3 for review of the
considerations leading to the setting of ES conventions, and the advantages
and disadvantages inherent in them. Briefly, we note here that these qualita-
tive adjectives are relative, and, being general, may not be reasonably des-
criptive in any specific area. Thus, what a sociologist may consider a small
effect size may well be appraised as medium by a clinical psychologist.

It must be reiterated here that however problematic the setting of an
ES, it is a task which simply cannot be shirked. The investigator who insists
that he has absolutely no way of knowing how large an ES to posit fails to
appreciate that this necessarily means that he has no rational basis for
deciding whether he needs to make ten observations or ten thousand.

Before presenting the operational definitions for f, a word about their
consistency. They are fully consistent with the definitions of Chapter 2 for
k =2 populations in terms of d, which, as noted, is simply 2f. They are
also generally consistent with the other ES indices which can be translated
into PV measures (see Sections 3.2.2 and 6.2.1).

We continue, for the present, to conceive of the populations as being
sampled with equal n’s.

SMALL EFFECT size: f=.10. We define a small effect as a standard
deviation of k population means one-tenth as large as the standard deviation
of the observations within the populations. For k = 2 populations, this defi-
nition is exactly equivalent to the comparable definition of a small difference,
d =2(.10) = .20 of Chapter 2 [formula (8.2.7) and, more generally, Table
8.2.1]. As k increases, a given f implies a greater range for Patterns 1 and 2.
Thus, with k =6 means, one at each end of the range and the remaining 4
at the middle (Pattern 1), an f of .10 implies a range d, of 3.46(.10) = .35,
while equal spacing (Pattern 2) implies a range d, of 2.93(.10) = .29. (The
constants 3.46 and 2.93 are respectively the b, and b, values at k=6 in
Table 8.2.1.) When =10 occurs with the extreme Pattern 3, the d, is at
(for k even) or slightly above (for k odd) 2f = .20 (Table 8.2.1). Thus, depend-
ing on k and the pattern of the means over the range, a small effect implies
d at least .20, and, with large k disposed in Pattern I, a small effect can
be expressed in a d, of the order of .50 or larger (for example, see Table
8.2.1 in column b, for k>12).
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When expressed in correlation and PV terms, the f=.10 definition of
a small effect is fully consistent with the definitions of Chapters 2, 3, and 6
(various forms of product moment r). An f=.10 is equivalent to » =.100
and 7* =.0099, about 1%, of the total superpopulation variance accounted
for by group membership. As already noted (particularly in Section 2.2.3),
scientifically important (or at least meaningful) effects may be of this modest
order of magnitude. The investigator who is inclined to disregard ES criteria
for effects this small on the grounds that he would never be seeking to
establish such small effects needs to be reminded that he is likely to be think-
ing in terms of theoretical constructs, which are implicitly measured without
error. Any source of irrelevant variance in his measures (psychometric
unreliability, dirty test tubes, lack of experimental control, or whatever)
will serve to reduce his effect sizes as measured, so that what would be a
medium or even large effect if one could use “true” measures may be attenu-
ated to a small effect in practice (See Section 11.3 and Cohen, 1962, p. 151).

MEDIUM EFFECT SIZE: f=.25. A standard deviation of k population
means one-quarter as large as the standard deviation of the observa-
tions within the populations, is the operational definition of a medium effect
size. With k = 2 populations, this accords with the d = 2(.25) = .50 definition
of a medium difference between two means of Chapter 2, and this is a
minimum value for the range over k means. With increasing k for either mini-
mum (Pattern 1) or intermediate (Pattern 2) variability, the range implied
by f =25 increases from d = .50. For example, with k = 7 population means,
if k —2 =35 of them are at the middle of the range and the remaining two
at the endpoints of the range (Pattern 1), a medium d, = 3.74(.25) = .94
(Table 8.2.1 gives b, = 3.74 at k =7). Thus, medium effect size for 7 means
disposed in Pattern 1 implies a range of means of almost one standard devia-
tion. If the seven means are spaced equally over the range (Pattern 2), a
medium d, = 3.00(.25) = .75 (Table 8.2.1 gives b, =3.00 for k=7), ie,
a span of means of three-quarters of a within-population standard deviation.
As a concrete example of this, consider the 1Q’s of seven populations made
up of certain occupational groups, e.g., house painters, chauffeurs, auto
mechanics, carpenters, butchers, riveters, and linemen. Assume a within-
population standard deviation for IQ of 12 (=o) and that their IQ means are
equally spaced. Now, assume a medium ES, hence f=.25. (Expressed in
IQ units, this would mean that the standard deviation of the seven IQ
means would be fo=.25(12) =3.) The range of these means would be
d, =.75 of the within-population o. Expressed in' units of IQ, this would
be dyo =.75(12) = 9 1Q points, say from 98 to 107. (These values are about
right [Berelson & Steiner, 1964, pp. 223-224], but of course any seven equally
spaced values whose range is 9 would satisfy the criterion of a medium ES
as defined here.)
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Viewed from the perspective of correlation and proportion of variance
accounted for, we note that f=.25 implies a correlation ratio (y) of .243
and a PV (here 5?) of .0588, i.e., not quite 6% of the total variance of the
combined populations accounted for by population membership (Table
8.2.2). Again, note that this is identical with the correlational-PV criterion
of a medium difference between two means (Section 2.2), necessarily so
since in this limiting case » =r (point biserial). It is also consistent with the
definition of a medium difference between two proportions, when expressed
as an r (fourfold point or ¢ correlation), which equals .238 to .248 when,
the proportions are in the interval .20 to .80 (Section 6.2). It is, however
smaller than the criterion for a medium ES in hypotheses concerning the
Pearson r (Section 3.2), where the medium r is .30 (and r? = .09).

LARGE EFFECT SIZE: f=.40. Our operational definition (or proposed
convention) of a large spread of k means is that the standard deviation of
the means be .40 of the standard deviation of the observations within
the populations. This is consistent with the criterion of a large difference
between two means of d = 2(.40) = .80 (Section 2.2.2) and is the minimum
range (since k =2) which can be called large by this definition. With the
means disposed in Pattern 1, a large span for 6 means isd, = 3.46(.40) = 1.38,
fcr 7 means d; = 3.74(.40) = 1.50, for 8 means d, = 4.00(.40) = 1.60, etc.,
i.e., about 14 standard deviations (b, constants from Table 8.2.1). For equally

- spaced means (Pattern 2), this implies for 6 means, a range of d, = 2.93(.40) =

1.17, for 7 means a range of d, = 3.00(.40) = 1.20, and for 8 means a range
of d, = 3.06(.40) = 1.22, etc., i.e., about 1} standard deviations (b, constants
from Table 8.2.1). We use a similar illustration to that given for medium
effect size, where for k =7 occupation groups with equally spaced popula-
tion mean IQs, we found the range d, =b,f = 3.00(.25) = .75, or, expressed
in 1Q units, .75¢ =.75(12) = 9.0. Consider now a new set of 7 occupations:
house painter, chauffeur, upholsterer, mechanic, lathe operator, machinist,
laboratory assistant. Their mean IQ’s, to have a large range, would need to
cover uniformly the interval d, =b,f=3.00(.40) = 1.20, or expressed in
IQ units, again assuming that ¢ = 12, 1.200 = 1.20(12) = 14.4, say from 98
to 112 (Berelson & Steiner, 1964, pp. 223-224). Again note that any set of 7
occupation groups with IQ means spanning the same range would represent
a large effect as defined here, wherever that range occurs.

In terms of correlation and proportion of variance accounted for, f = .40
implies a correlation ratio () of .371 and a PV (here 32) of .1379, somewhat
more than twice the PV for a medium effect (5% = .0588). Note the neces-
sary consistency with the definition in correlation-PV terms of a large
difference between two means (; = point biserial r; see Section 2.2). This
definition is also fully consistent with the definition of a large difference
between two proportions, when expressed as an r (fourfold point or ¢
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correlation), which equals .37-.39 when the proportions fall between .20 and
.80 (Section 6.2). However, it is smaller than the criterion for a large ES in
hypotheses concerning the Pearson r, where large r is defined as .50, r? =
PV = .25 (Section 3.2).

8.3 POwEeR TABLES

The power tables for this section are given on pages 280-354; the text
follows on page 355.

8.3 POWER TABLES

Table 8.3.1

Power of F testata=.01,u=1

289

n Fe .05 .10 .5 .20 .25 .30 .35 .o .50 .60 .70 .80
2 98,503 o1 [1]] ot [ 02 02 03 o o 05 0é 08
3 21,198 o1 o 4] 02 02 02 03 o4 05 07 09 11
4 13.745 01 ot o1 02 02 03 ol 05 07 10 i 19
5 11.259 ot 1] 02 02 03 03 05 06 10 15 21 29
[3 10. 04k o1 4] 02 02 03 ok 06 08 13 20 29 &o
7 9.330 ot ot 02 03 o 05 07 10 17 26 38 50
8 8.861 01 ol 02 03 o4 06 09 12 21 32 W6 60
9 8.531 ot 02 02 03 05 07 10 1h 25 39 ch 68
10 8,285 01 02 02 (1] 06 08 12 17 29 4 4] 75
n 8.096 o 02 03 ] 06 09 "W 19 34 51 67 81
12 7.946 ot 02 03 05 07 1" 6 22 38 56 73 86
13 7.823 (1] 02 03 05 08 12 18 25 42 61 78 89
10 7.721 4] 02 03 05 08 13 20 28 46 66 82 92
15 7.636 (4] 02 03 05 09 15 22 30 50 70 85 9
16 7.562 01 02 O 06 10 16 24 33 54k W 88 96
17 7.499 ot 02 o4 07 3] 17 26 36 58 78 91 97
18 7. bl 0l 02 o4 07 12 19 28 39 62 81 92 98
19 7.396 ot 02 ol 08 13 20 30 W1 65 83 94 98
20 7.353 o1 02 [ 08 | 22 32 U4 68 86 95 99

21 7.314 1] 02 05 08 15 24 E IS ] 7" B8 96 99
22 7.280 0l 03 05 09 16 25 37 3] 73 90 97 99

23 7.248 o1 03 05 09 1727 39 52 7 9 98 *

24 7.220 (4] 03 05 10 18 8 W 54 78 93 98

25 7.194 o1 03 06 10 19 30 43 57 80 94 99

26 7.171 of 03 06 1 20 3t bs 59 82 95 99

27 7.149 01 03 06 12 21 33 47 61 84 9% 99

28 7.129 o1 03 06 12 22 3 ke 63 86 96 99

29 7.110 01 03 o7 13 23 36 50 65 87 97 *

30 7.093 ot 03 07 13 24 38 53 67 89 97

31 7.077 02 03 07 0 25 39 55 69 90 98

32 7.052 02 03 07 15 26 W 56 n 91 98

33 7.048 02 o 08 15 27 b2 58 73 92 99

34 7.035 02 ol 08 16 28 4 60 75 93 99

35 7.023 02 b 08 17 30 4s 62 76 94 99

36 7.011 02 o4 08 17 3 b7 63 78 9% 99

37 7.001 02 o 09 18 32 48 65 79 95 93

38 6.990 02 o4 09 19 33 50 66 80 9% 99

39 6.981 02 04 09 19 w51 68 82 96 *
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Table 8.3.1 (continued]

n Fe W05 .10 15 .20 .25 .30 .35 .k0 .50 .60 .70 .BO
40 6.97% 02 ol 10 20 35 53 69 83 97 * * *
L2 6.954 02 ol 10 21 37 55 72 85 97
il 6.939 02 05 " 23 39 58 75 87 98
46 6.925 02 05 1" 24 A 60 77 By 98
48 6.912 02 05 12 25 L 63 79 90 99
50 6.901 02 05 13 27 46 65 8t 92 99
52 6.890 02 05 13 28 4B 67 83 93 99
b 6.880 02 06 14 30 50 70 85 9k 99
56 6.871 02 06 15 31 52 72 86 95 *
58 6.862 02 06 16 33 54 73 88 95
60 6.854 02 06 16 34 56 75 89 95
&4 6.840 02 07 18 37 59 19 91 97
68 6,828 02 07 19 ko 63 82 9 98
72 6.817 02 08 21 L2 66 84 95 99
76 6.807 02 08 22 hs 69 87 96 99
80 6.798 02 09 2 48 72 89 97 99
84 6.790 03 09 25 0 74 90 97 *
88 6.783 03 10 27 53 77 92 98
92 6.776 03 10 29 55 79 93 98
96 6.770 03 n 30 57 8 9 99

100 6,76k 03 n 32 60 83 95 99

120 6.742 03 4 4o 70 90 98 *

1ho 6.727 ol 17 L7 78 95 99

160 6,715 oh 21 5h 84 97 *

180 6.706 o4 24 61 89 99

200 6.699 05 28 67 92 99

250 6.686 07 37 79 97 *

300 6.677 08 45 87 99

350 6.671 10 53 92 *

400 6.667 1 60 95

450 6.663 13 67 97

500 6.661 15 73 99

600 6.656 19 82 *

700 6.653 24 88

800 6.651 28 93

900 6.6L49 32 95

1000 6.648 37 97

* Power values below this point are greater than .995,
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Table 8.3.2
Power of F testata = .01, u=2
n Fe 05 .10 5 20,25 .30 .35 40 .50 .60 .70 .80
2 30.817 o1 ot [\]] ol 02 02 03 03 03 O 06 07
3 10.925 01 ot ot 02 02 02 03 o4 05 07 1o 13
4 8.022 o1 o1 01 02 02 03 04 05 o8 12 17 24
5 6.927 0V ot 02 02 03 o 05 07 1 18 27 38
6 6.359 ot 01 02 02 03 05 07 09 16 26 38 &1
7 6.013 . ot [i]] 02 03 o4 06 08 " 2t 33 48 63
8 5.780 0l o1 02 03 05 07 16 W 2 W 58 73
9 5.614 o1 02 02 o4 05 08 12 17 N b9 67 81
10 5.488 ot 02 03 ol 06 10 14 21 37 56 74 87
1 5.390 01 62 03 o+ 07 1" 17 2 k2 63 80 9
12 5.313 o1 02 03 05 08 13 19 27 48 69 85 9%
13 5,249 01 02 03 05 09 10 22 3 53 74 89 96
14 5.195 0Ol 02 03 06 10 16 2 3 58 79 92 98
15 5,150  OF 02 ok 06 1N 18 27 38 62 82 % 39
16 5111 o 02 04 07 12 20 30 W 67 86 96 99
17 5.078 01 02 o 07 13 21 32 45 70 8 97 99
18 5.048 ot 02 o4 08 14 23 35 48 74 N 98 *
19 5,022 01 02 05 09 15 25 38 %2 7 93 98
20 4,999 ot 02 05 09 17 27 Lo 55 8o 94 99
21 L.977 ot 03 05 10 18 29 43 58 8 95 99
22 4,959 01 03 05 10 19 31 L5 61 85 96 *
23 4,943 o1 03 06 11 20 33 48 6 87 97
24 4,928 ot 03 06 12 22 35 5t 66 89 98
25 4,914 o1 03 06 12 23 37 53 69 91 98
26 4,901 (] 03 07 13 28 39 56 7 92 99
27 4,89 o1 03 07 26 bl 58 7 93 99
28 4,878 o1 03 07 15 27 43 60 75 9 99
29 4.868 ot 03 07 15 28 45 62 78 95 99
30 4,859 02 03 08 16 30 47 65 8O 96 *
3t 4,850 02 o4 08 177 3 49 67 B 96
32 4,842 02 ok 08 18 33 51 69 83 97
33 4,83 02 O 09 19 34 53 70 8 98
34 4.827 02 ol 09 19 35 sh 72 86 98
35 4,80 02 o 09 20 37 56 74+ 87 98
36 4,814 02 ok 02 38 58 7% 83 99
37 4,808 02 o4 10 22 4o 59 77 89 99
38 4,802 02 o4 10 23 3] 61 79 90 99
39 4,797 02 ot 1 k0 b2 63 g0 91 99
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Table 8.3.3
inued
Table 8.3.2 {continued) Power of F testata=.0t,u=3
f
£
.25 .30 .35 .40 .50 .60 .70 .BO
n Fo 205 .10 .15 .20 .25 .30 .35 n F. 05 .10 .15 .20 .25 .30 .35 .40 L50 .60 .70 .80
6 81 92 99 ok k¥ :
4o k791 02 05 :; 2 Z‘g AR gl, > 2 16694 01 01 ol ol 02 02 02 03 o0 05 06 o7
42 4,782 02 85 2% e 70 e 9 3 7.5 00 o1 ot 02 02 03 o3 os 06 08 12 16
:2 :;gg gg og I 30 P A 88 96 ; & 5.953 o1 o (4] 02 02 03 o 06 09 15« 22 3
. 0 i
48 4760 02 05 W 3z s 75 90 97 g g.zs; 00 0 02 02 03 o 06 08 & 23 34 48
; .93 ol ol 02 03 ok 05 08 11 20 32 47 63
50 wos3 oz 06 1 3 o g w o 7 b,718 ot o1 02 03 ok 06 10 4 26 k2 59 75
52 4,77 o2 o6 A 8 bs68 01 02 02 03 05 08 12 17 32 51 &9 8
516. l‘:;l;; gg 26 18 33 63 83 o 99 9 k6o ot 02 02 o 06 10 15 21 33 39 78 90
5 .
58 4,732 02 07 19 ko 65 8 95 99 10 :.373 00 02 03 o4 07 1M 17 25 45 67 B o4
: 1 313 00 02 03 05 08 13 20 29 52 74 8y g7
60 b2 oz 07 20 :2 317 gg 3"; gg 12 k262 00 02 03 05 09 15 23 3k 8 79 92 o8
64 4,720 02 og SRS < S S 13 bot9 o0 02 03 06 10 17 27 38 &3 8 95 99
68 2;3 gg 39 % e B 93 99 : 4 4,183 o1 02 o4 07 12 19 30 42 68 88 97 99
72 . 5
76 4702 02 09 28 55 B 95 99 i ug :.153 o1 02 o 07 13 22 33 4 73 91 98 #
i ! 126 o1 02 ob 08 14 24 36 50 77 93 9
g0 g7 03 10 30 A % % 1 17 bitoh 01 02 o4 09 16 26 ho & B 95 o9
o L6303 10 2 oo % 'z 18 bosh ot o2 05 03 17 29 L3 8 8 9 99
gg l&.ggg g; N3 e 8 o , ' i 19 boé7 ot 02 o5 10 19 31 46 62 8 97
96 4,682 03 13 38 6 91 98 20 2.05; o1 03 05 11 20 33 49 65 89 98
. oo .03 01 03 06 1 2 36 52 € 91 99
100 4,678 03 13 Eg & gg i , 22 bo2s o0 03 06 12 23 38 35 N 92 99
120 4,666 O 1{ y 2 ; 23 o3 o1 03 06 13 28 ko 58 7 o o9
:Zg 22@1 g‘; 26 26 9 99 i 24 oo or 03 07 & 26 4 6 77 95 g9
180 46k 05 30 73 9% * 25 3.993 01 03 07 15 28 45 €3 79 96 %
6 26 3.985 01 03 07 16 30 48 6 8 97
200 4,642 06 34 59 gg : 27 3.976 01 03 08 17 31 0 68 83 97
250 L,634 07 45 9 3 s 28 3.969 02 03 08 18 33 52 7N 85 98
300 :,g;z ?? zg gg, 29 3.962 02 oh4 08 19 35 54 73 87 98
350 .
hoo 4,623 13 72 99 : 30 3.955 02 oh 09 20 36 56 75 88 g9
450 4621 16 19 * 31 3.949 02 ok 09 21 38 58 77 90 99
; 32 3.945 02 o4 10 22 ko 60 79 91 99
500 4620 18  Bh 33 3.939 02 o4 10 23 W 62 80 92 99
¢00 4 ,g 17 :zzl; g ; : 34 3.93: 02 ok 10 2b 43 64 82 93 99
700 4,61
800 4614 35 98 35 3.929 02 oh 11 25 45 66 BY 94 %
900 4613 Lo 99 : C 3% 3.925 02 o4 11 26 46 68 85 o4
1000 Ler12 45 99 37 3.92t 02 05 12 27 48 70 86 95
38 3.917 02 05 12 28 4 71 87 96

* Power values below this point are greater than .995. : 39 3.914 02 05 13 29 51 73 a8 2%
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Tabie 8.3.3 (continued)
n Fe .05 .10 .15 .20 .25 .30 .35 ko .50 .60 .70 .80
40 3.910 02 05 13 30 53 74 89 97 * * * *
42 3,904 02 ©05 14 32 5 77 91 98
bl 3.898 02 06 15 34 58 80 93 98
Lé 3.893 02 06 16 36 61 82 9% 99
48 3.889 02 06 17 38 64 B 95 99
50 3.88 02 06 18 W 66 B 96 99
52 3.880 02 07 19 4 63 8 97 99
[} 3,876 02 07 21 &5 n 90 97 *
56 3.873 02 07 22 Y] 73 91 98
58 3.870 02 08 23 (%) 75 92 98
60 3.867 02 08 2 51 77 93 99
64 3.862 02 09 26 55 81 95 99
68 3.857 02 09 29 59 8 96 99
72 3.853 03 10 3t 62 87 97 %
76 3.860 03 11 3 65 8 98
80 3.845 03 1t 36 69 9 9
84 3.862 03 12 38 72 93 99
88 3.839 03 13 4 74 9% 9
92 3.837 03 b - b3 77 95 99
96 3.835 03 15 45 79 96 %
100 3,832 03 16 48 Bl 97
120 3.824 o 21 59 90 99
140 3.818 ol 26 68 95 *
160 3.813 05 31 76 97
180 3.810 06 36 B2 99
200 3.807 07 42 87 99
250 3.802 09 sk 95 *
300 3,798 11 66 98
350 3.79 13 15 99
Loo 3.794 16 82 *
150 3.793 19 87
500 3.792 22 91
600 3,790 29 96
700 3.789 35 98
800 3.788 b2 99
900 3.787 49 *
1000 3.787 55

% Power values below this point are greater than ,995,
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Table 8.3.4
Power of F testata= .01, u=4

n Fe .05 .10 15 .20 .25 .30 .35 .40 .50 .60 .70 .80
2 11.392 ol ot [i]] ol 02 02 02 03 ok 05 06 08
3 5,994 01 (1] o1 02 02 02 03 ok 06 10 14 20
4y 4,893 o o1 ot 02 03 03 o4 06 n 18 27 39
5 L. 43 o 1] 02 02 03 o5 06 09 17 28 k2 s§7
6 4,177 01 01 02 03 os 06 09 12 23 39 5 73
7 4,018 ot o1 02 03 o5 08 11 16 3 50 69 84
8 3.910 Ot 02 02 o 06 09 w21 39 60 78 9
9 3.828 ol 02 03 o 07 11 17 25 46 69 8 95
10 3.769 ot 02 03 05 08 13 21 30 54 7% 9 97
1 3.72t o 02 03 05 69 15 24 35 60 B2 ok 99
12 3,682 ot 02 03 06 Al 18 28 Lo 67 87 96 99
13 3.649 01 02 o 07 12 20 32 b5 72 90 98 *
14 3.623 o1 02 o4 07 13 23 35 50 77 93 99

15 3.601 o 02 o+ 08 15 26 39 sk B8 95 99

16 3.581 o1 02 05 09 17 28 L3 59 85 97 *

17 3.564 01 02 05 10 18 3N 47 63 88 98

18 3.549 o1 03 05 1 20 34 50 67 90 98

19 3.536 01 03 06 1" 22 37 54 70 92 99

20 3.524 o1 03 06 12 2% 39 57 % 99

21 3.5 0 03 06 13 26 h2 60 77 95 *

22 3.504 0! 03 07 127 45 64 B0 96

23 3495 ot 03 07 15 29 48 67 82 97

24 3.487 O 03 07 16 31 50 69 84 98

25 3.480 Ot 03 08 17 33 53 72 B 98

26 3.473 01 03 08 19 35 55 7% 88 99

27 3.467 02 o4 69 20 37 S8 77 90 99

28 3.462 02 04 69 2 33 60 79 9 99

29 3.457 02 ok 1 22 W 63 81 92 99

0 3.452 02 oh 10 23 43 65 83 93 *

3 3.448 02 oh 1" 2k 45 67 84 oh

32 3.443 02 Ok 1 25 by 69 B 95

33 3.439 02 O4 1227 W 07N 87 96

34 3.436 02 05 12 28 50 73 89 97

35 3.432 02 (313 13 29 52 75 90 97

36 3.429 02 05 13 30 sh 76 9 98

37 3.426 02 05 1 32 56 78 92 98

38 3.423 02 05 ik 33 57 79 93 98

39 3.420 02 05 15 3% 59 8t 9% 99
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Table 8.3.4 (continued)
n Fc .05 .10 .15 .20 «25 .30 .35 ko .50 .60 .70 .80
4o 3.418 02 05 15 35 61 82 9% 99 * * * *
42 3413 02 06 17 38 64 8 96 99
Lty 3.409 02 06 18 Lo 67 87 97 99
46 3,405 02 06 19 43 70 89 97 *
48 3.401 02 07 20 45 72 91 98
50 3.398 02 07 22 48 75 92 98
52 3.395 02 07 23 50 77 93 99
54 3.392 02 08 24 52 79 9 99
56 3.389 02 08 26 5 8 95 99
58 3.386 02 09 27 57 8 96 99
60 3.38 02 09 28 59 8 97 &
&4 3.380 02 10 n 63 88 98
68 3.376 03 1" 34 67 90 98
72 3373 03 1t 37 7 92 99
76 3.3 03 12 39 74 9% 99
80 3,38 03 13 42 77 95 *
84 3.366 03 b b5 80 96
88 3.364 03 15 48 82 97
92 3.361 03 16 50 8 98
96 3.360 03 17 53 86 98
too 3.358 [+5] 19 55 88 99
120 3.352 o 24 67 9 *
1ho 3347 05 30 76 98
160 3.3k 06 37 84 99
180 3341 06 43 89  *
200 3.339 07 49 93
250 3.335 10 63 98
300 3.332 12 b 99
350 3.330 15 B2«
400 3.329 19 89
450 3.328 22 93
500 3.327 26 96
600 3,326 34 98
700 3.326 k2 %
800 3.324 49
900 3.323 56
1000 3.323 63

* Power values below this point are greater than .995,
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Table 8.3.5
Power of F testata=.01,u=5

n Fe 05 10 15 .20 .25 .30 .35 Lo .50 .60 .70 .80
2 8.746 01 (4] o1 o1 02 02 02 03 O 05 07 09
3 5,064 01 o1 ot 02 02 03 03 o4 o7 1 17 2
[ L.2u8 01 o 02 02 03 o 05 o7 12 21 32 L§
5 3.895 o1 [ 02 02 03 05 07 10 19 33 ky 66
6 3.699 oOf (] 02 03 O+ 07 10 4 28 45 &4 80
7 3.576 01 o1 02 03 05 08 13 19 3 51 76 90
8 3.489 o1 02 02 o4 07 10 16 24 4s 67 85 95
9 3.426 ot 02 03 05 08 13 20 30 53 75 91 98
10 3,388 01 02 03 05 09 15 24 35 61 83 95 99
1" 3.339 ot 62 03 06 10 18 28 & 68 88 97 *
12 3.309 o1 0z o4 07 1221 32 4 M 92 98

13 3.284 01 02 ol 07 14 24 37 52 79 95 99

1h 3.263 of 02 o+ 08 15 27 W 57 8 97 *

15 3.244 01 02 05 09 17 306 45 62 87 98

16 3.229 O 02 05 Yo 19 33 b4y 66 90 99

17 3.215 ot 03 05 3} 2t 36 53 70 92 99

18 3.203 01 03 06 12 23 39 57 74 % 99

19 3.192 Ot 03 06 13 25 k2 61 77 9% *

20 3.182 ot 03 07 W 27 45 64 B 97

24 374 01 03 07 15 30 48 68 83 98

22 3.166 01 03 07 16 32 51 n 8 98

23 3.159  of 03 08 18 34 sb 74 88 99

24 3.153 01 03 08 19 36 57 76 90 99

25 3.147 0} o4 09 20 38 60 79 91 99

26 3142 02 o4 03 21 o 63 8 93 *

27 3.137 02 o4 10 23 43 65 B3 94

28 3,133 02 o4 10 24 ks 67 B 95

29 3.129 02 o4 " 25 47 0 8 9

30 3.125 02 O4 n 27 by 72 88 97

31 3.121 02 Ob 12 28 51 7t 90 97

32 3.118 02 05 12 29 53 7% 9 98

33 3.115 02 05 13 31 55 78 92 98

34 3112 02 05 W 32 57 8 93 98

35 3.109 02 05 W 3% 59 8 9% 99

36 3.107 02 05 15 35 & 83 95 99

37 3.106 02 05 16 36 63 8 95 99

38 3,102 02 06 16 38 6 B8 96 99

39 3100 02 06 17 39 66 8 97 99
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Table 8.3.5 {continued)
n Fe .05 .10 .15 .20 .25 .30 .35 4o ,50 .60 .70 .80
4o 3.097 02 06 18 41 68 8 97 * * * * *
b2 3.093 02 06 19 43 7 90 98
4Ly 3.090 02 07 20 46 7h 92 98
Lg 3.087 02 07 22 49 77 93 99
48 3.086 02 07 23 52 79 9% 99
50 3,081 02 08 25 sS4 81 96 99
L2 3.079 02 08 26 57 84 96 *
5h 3.076 02 09 28 59 85 97
56 3.074 02 09 30 61 87 98
8 3,072 02 10 N 64 89 98
60 3.070 02 10 33 66 90 99
64 3.067 03 1t 36 70 92 99
68 3.064 03 12 39 7 9l 99
72 3,068 03 13 kb2 77 96 *
76 3.059 03 14 45 80 97
80 3.057 03 15 48 83 98
84 3.055 03 16 st B6 98
88 3.053 03 18 54 88 99
92 3.052 03 19 57 90 99
96 3.050 s} 20 60 91 99
100 3.049 ol 21 62 93 *
120 3.044 ol 28 7h 97
140 3,040 05 35 83 99
té0 3.037 06 42 89 *
180 3.035 07 49 93
200 3.033 08 55 96
250 3.030 1t 70 99
300 3,028 14 80 *
350 3.026 18 88
400 3.025 22 93
450 3,024 26 96
500 3.023 30 98
600 3.022 39 99
700 3.022 LY} *
800 3.021 56
900 3.021 63
1000 3.020 70

* Power values below this point are greater than .995,
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Table 8.3.6
Power of F testata=.01,u=6

n Fo 05 .10 15 .20 .25 .30 .35 b0 .50 .60 .70 .80
2 7.191 o1 ot (] 0! 02 02 0 03 o 06 07 10
3 Lhss 01 o1 o1 02 02 03 03 05 08 13 19 28
3 3.812 o1 o 02 02 03 o+ 06 08 & 2 37 5
5 3.528 01 (1] 02 03 o 06 08 12 22 38 56 73
[ 3.369 o1 o 02 03 o5 07 1 16 32 & 71 86
7 3.266 o1 02 02 [ ) 06 09 15 22 ] 64 83 9
8 3.196 ot 02 03 o 07 12 19 28 5 b 90 97
9 3143 01 02 03 o0 09 W 23 3B 60 8 95 g9
10 3.103 o1 02 03 06 10 17 27 L 6 88 o7 *
1 3072 o1 02 03 06 12 20 32 W W 92 99

12 3,047 0} 02 o4 07 13 23 37 52 8o 95 99

13 3.026 o1 02 04 08 15 27 n 58 85 97 *

1h 3.008 01 02 05 09 17 30 ¢ 63 89 98

15 2.992 ot 02 05 10 20 3 51 68 92 g9

16 2973 00 02 05 1 2 37 55 72 o4 99

17 2,968 01 03 06 12 2 I 59 76 95 *

18 2,957 o1 03 06 13 26 4 83 8 97

19 2,949 01 03 07 15 29 48 67 83 98

20 2.941 o1 03 07 16 3 5 7 8 98

21 2,93 01 03 08 17 3% s 4 88 o

22 2,928 01 03 08 19 36 57 77 50 99

23 2.922 ot 03 03 20 38 60 80 92 g9

24 2,917 02 o 09 21 ] 63 82 93 *

25 2,912 02 o 10 23 43 66 B 95

26 2.908 02 o+ 10 2b 46 69 86 96

27 2,906 02 o 11 26 W8 7N 88 96

28 2,900 02 o 11 27 50 7% 90 97

29 2.896 02 o4 12 29 g3 7% 9 98

30 2,893 02 05 13 30 55 78 92 98

3 2.880 02 05 13 32 57 B0 93 99

32 2,887 02 05 14 33 359 82 9 9

33 2.884 02 05 15 35 61 83 95 99

3 2.882 02 05 15 36 63 8 9 99

35 2,880 02 o5 1 38 65 8 97 99

36 2.877 02 06 17 o 67 88 97 *

37 2,875 02 06 18 W 69 8 98

38 2873 02 06 18 43 71 90 g8

39 2.8 02 06 19 W 722 @9 98
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'

Table 8.3.8 {continued] Tabte 8.3.7
Power of F testata=.01,u=8
f
f
n Fo L05 .10 15,20 .25 .30 .35 k0 .50 .60 .70 .80
n Fe 05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
4o 2,870 02 06 20 LT3 7h 92 99 * * * * *
42 2,866 02 07 22 49 77 9% 99
Lk 2,863 02 07 23 52 80 95 99 2 5467 o1 o0 o1 o 02 02 02 0 05 06 03 12
L6 2.861 02 08 25 55 B2 96 *x 3 3.706 o1 00 o 02 02 03 O 05 10 16 25 137
48 2.858 02 08 27 57 8 97 4 3.256 01 ot 02 02 03 05 07 09 18 3 Ly 65
50 2.856 02 09 28 60 87 98 5 3.053 o1 o1 02 03 o4 05 10 th 28 47 67 8
52 2.8 02 09 30 63 88 98 § 2.9%6 o1 o0 02 0 05 09 W4 20 L 63 8 g3
5l 2.852 02 10 32 65 90 99 7 2.8 ot 02 02 O 07 11 18 27 51 75 91 98
56 2.850 02 10 33 68 91 99 8 2,808 o1 02 03 05 08 th 23 3% 61 B 96 99
58 2.848 02 n 35 70 93 99 9 2.770 01 02 03 06 10 18 28 42 ral 90 98 *
60 2.847 02 11 37 72 % 9 10 2760 01 02 03 07 12 21 3%k k9 78 94
6k 2.8 03 12 ko 76 95 * " 2,716 01 02 o4 08 W 25 40 56 8 97 4
68 2,841 03 13 bk 80 97 12 2,697 o1 02 o 09 17 29 4 62 89 98
72 2.839 03 i L7 83 98 3 2,681 01 02 05 10 19 33 51 68 92 g9
76 2,837 03 16 S 8 98 14 2,667 o 02 05 1t 22 37 56 MW 95
80 2.835 03 17 sh a8 99 15 2.656 01 03 06 12 24 h2 61 78 9%
8 283 03 18 57 90 99 16 2,646 01 03 06 13 27 M6 65 B2 o8
88 2.832 03 20 60 92 99 17 2638 01 03 07 15 30 50 70 86 98
92 2.831 ok 21 63 93 * . 18 2,630 01 03 07 16 33 sS4 % 88 99
96 2.830 o4 23 66 95 19 2.626 ot 03 08 18 35 57 77 91 99
100 2,829 05 2 69 96 20 2,618 01 03 08 20 38 6 8 93
120 2.825 05 32 80 99 2 2,612 00 03 09 21 &1 6k B3 o
140 2.821 06 39 88 * 22 2.608 (] ol 10 23 [ 68 86 96
160 2.819 07 4 93 3 2,603 02 O+ 10 25 k7 71 88 9
180 2.817 08 sk 9 24 2599 02 O 1 26 50 7 % 97
200 2,815 09 61 98 2 2,596 02 04 12 28 52 76 92 98
250 2.813 12 76 % 26 2,592 02 ok 12 30 5 79 93 98
300 2.811 16 86 27 2589 02 05 13 32 58 81 9 99
350 2,810 20 , 92 28 2,586 02 05 Wb 3 60 8 95 99
400 2.809 24 96 29 2,583 02 05 15 35 63 85 96 99
4 2.808 2 8
50 9 9 30 2.581 02 05 15 37 65 8 97
500 2,807 3 99 31 2.579 02 05 16 39 67 88 97
600 2,806 b4 32 2,576 02 06 17 b1 70 90 98
700 2.806 53 33 2.57h 02 06 18 43 72 91 98
800 2.805 62 34 2,573 02 06 19 45 7he 92 99
900 2,805 69
1000 2.805 76 35 2.5 02 06 20 Lé 75 93 99
36 2.569 02 06 21 [1:] 7 ol 99
37 2.567 02 07 22 50 79 95 99
38 2.566 02 07 23 s52 80 95 99

* Power values below this point are greater than .995,
39 2,564 02 07 24 5 82 96 *
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Table 8.3.7 {continued)
f
n Fc .05 10 .15 .20 .26 .30 .35 .o 50 .60 .70 .80
4o 2,563 02 07 25 55 83 97 * * * * * *
42 2.561 02 08 27 58 86 97
[ 2.558 02 08 29 62 88 98
e 2,556 02 09 31 65 90 99
48 2.55h 02 10 33 68 92 99

50 2,553 02 10 35 70 93 99
52 2,551 02 N 37 1 % 99
54 2,550 02 11 39 75 95 &
56 2.548 03 12 L1 78 96
58 2.547 03 13 LX) 80 97

60 2.586 03 13 45 82 97
& 2.543 03 15 49 85 98
68 2.580 03 16 53 88 99

72 2,550 03 8 57 90 99
7% 2.538 03 20 61 92 *
80 2.537 03 21 64 94
84 2,53 ok 23 67 95
88 2.535 o4 24 70 96
92 2.53 o 26 73 97
9% 2.533 ok 28 76 98
100 2,532 o4 30 78 98
120 2.529 05 39 88 *
140 2,526 06 U8 9h

160 2,524 07 57 97

180 2,523 09 65 99

200 2,521 10 72 99

250 2.519 ih 85 *

300 2.518 19 92

350 2,517 25 97

koo 2.516 30 99

450 2.516 36 99

500 2.515 b2 *

600 2,515 63

700 2.5th 63

800 2514 72

900 2.514 79

1000 2.513 85

* Power values below this point are greater than .995,

1
8.3 POWER TABLES'

Table 8.3.8
Power of F testata = 0f,u=10"

n F, W05 10 .15 .20 .25 .30 .35 .ho .50 .60 .70 .d0
2 hus39 o1 o1 0 o1 02 02 03 03 05 07 {0 15
3 3.28 01 01 02 02 02 03 O 06 1} 20 3 &6
4 2.9t 01 o1 02 02 03 05 08 11 2 38 57 7k
5 2,752 01 Of 02 0 05 07 11 17 3% 6 77 9
6 2.662 01 ot 02 O 06 10 16 25 k7 72 89 97
7 2,603 01 02 03 o5 o8 13 22 33 60 83 95 99
8 2,561 01 03 03 o0 10 17 28 4 70 91 98 &
9 2,530 o1 03 03 07 12 21 3% Lk 79 95 99

10 2,506 01 03 o4k 08 b 25 Lo 57 86 97

n 2487 o1 03 o4 09 17 30 47 65 97 99

12 2.4 (4] 03 05 10 20 35 53 7N 9% 99

13 2.b58 ot 03 05 11 23 KO 59 77 96

h 2,448 o1 03 06 13 26 [ 65 82 98

15 2439 01 03 06 1k 29 k9 70 8 99

16 2,431 (] 03 07 16 32 53 M B9 99

17 2426 o0 03 08 18 35 58 718 9 *

18 2.m8 o1 03 08 19 39 62 B2 o

19 213 01 03 09 21 k2 66 85 a5

20 2.408 o1 [ 10 23 Ls 69 -] 96

2 2403 02 ok W0 25 49 73 90 97

22 2399 02 ok 11 27 52 76 92 98

23 2,396 02 OF 12 29 55 79 93 99

24 2,393 02 o4 13 n 58 81 98 99

25 2,30 02 05 13 33 61 8 96 99

26 2,387 02 05 W 35 63 8 97 *

27 2,38 02 05 15 38 66 8 97

28 2382 02 05 16 40 69 S0 98

29 2,380 02 05 17 42 71 91 98

30 2,378 02 06 18 by 7 92 9

3 2376 02 06 19 W6 76 93 99

32 2374 02 06 20 48 78 o 99

33 2,372 02 06 21 50 8 9% 99

34 2.3Nn 02 07 22 52 8 96 *

35 2.369 02 07 24 54 83 97

36 2,38 02 07 25 5 8 97

37 2.367 02 08 26 58 86 98

38 ‘2,365 02 08 27 60 87 98

39 2.36h 02 o8 28 62 89 98
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Table 8.3.8 (continued)

8.3 POWER TABLES

Power of F testata=.01,u=12

Table 8.3.9

f
n Fe .05 .10 .5 .20 .25 .30 .35 .40 .50 .60 .70 .80
Lo 2,363 02 08 29 63 90 99 * * * * * *
42 2.361 02 09 32 67 92 99
by 2.359 02 10 3% 70 93 99
46 2.358 02 10 36 73 95 *
48 2.356 02 " 39 76 96
50 2.355 02 12 9
52 2.353 03 12 43 8 97
54 2.352 03 13 44 83 98
56 2.351 03 i 48 85 98
58 2.350 03 1§ 50 87 99

68 2.356 03 19 61 93 *
72 2,34 03 21 65 95
76 2.343 ok 23 69 96
80 2,342 o4 25 72 97
84 2.3 o4 27 75 98
88 2,350 o 29 78 99
92 2.339 o4 k) 81 99
96 2,338 05 33 83 99
100 2.338 065 35 B6 99
120 2,335 06 46 93 *
140 2,333 07 56 97

160 2.33t 65 99

180 2,330 10 73 *

200 2329 1279

250 2.327 17 9

300 2,326 23 9

350 2,326 29 99

400 2.325 36 *

450 2.325 52

500 2.326 51

600 2,324 61

700 2,323 1N

800 2.323 80

900 2,323 86

1000 2.323 91

* Power values below this point are greater than .995.

n Fo .05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
2 3.960 0} (] 0 ot 62 02 03 O 05 08 12 18
3 2,958 01 ot ot 02 03 O 05 07 13 - 23 37 54
4 2.679 o1 ot 02 03 Ols 06 09 13 26 Lh 65 82
5 2.548 0 01 02 03 05 08 13 20 4o 64 B4 95
6 2.472 0 02 02 o 07 12 19 29 s 79 9 99
7 2,422 ot 02 03 05 09 15 25 38 67 8 98 *
8 2.387 o 02 03 06 1 20 32 4 8 95 99

9 2.361 o1 02 ol o7 1% 25 39 57 85 98 *

10 2,340  of 02 o 08 17 30 k7 65 91 99

n 2,325 o1 02 05 10 20 35 sh 72 9 *

12 2,312 O 02 05 11 23 Ko 60 78 97

13 2.301 o1 03 06 13 26 45 6 83 98

1 2,292 01 03 06 15 30 5t 72 87 99

15 2,285 o1 03 07 16 33 s 77 9N 99

16 2,278 O 03 08 18 37 60 8 93 *

17 2,272 ot 03 08 20 M 65 B4 95

18 2.267 o1 63 09 23 4 69 87 97

19 2,262 O oh 10 26 LB 73 90 98

20 2,28 02 o N 27 52 76 92 98

21 2,256 02 O4 12 29 55 B0 9% 99

22 2,251 02 o+ 13 32 59 8 95 99

23 2,248 02 05 W 3 62 85 96 99

24 2.246 02 05 15 36 65 BT 97 *

25 2,243 02 05 16 39 68 B89 98

26 2.241 02 05 17 W 7 91 98

27 2,239 02 05 18 43 73 92 99

28 2.237 02 06 19 W 76 94 99

29 2,235 02 06 20 48 78 95 99

30 2,233 02 06 21 50 80 96 *

N 2.231 02 07 22 53 B2 9

32 2,230 02 07 2 55 8 97

33 2,228 02 07 25 57 86 98

34 2,227 02 o7 26 59 87 98

35 2,226 02 08 27 61 88 98

36 2.225 02 08 29 63 90 99

37 2,226 02 08 30 65 91 99

38 2,223 02 09 3! 67 92 99

39 2,222 02 09 32 69 93 99
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Table 8.3.9 {continued)

n Fe .05 .10 .15 .20 .25 .30 .35 .4 .50 .60 .70 .80

ho 2,221 02 09 3l N 9% 99 & * * * * *

] 2,219 02 10 36 7h 95 *

LY 22217 02 mn 39 77 9%

46 2.216 02 12 L2 8 97

48 2.215 02 12 Wb 82 98

50 2213 03 13 47 8 98 .

52 2,212 03 th 50 87 99

54 2.211 03 15 52 88 99

56 2,210 03 16 55 90 99

58 2,209 03 17 87 9 *

60 2,29 03 18 59 93

64 2,207 03 20 6h 95

68 2,206 03 22 68 96

72 2.206 ok 24 72 97

76 2.203 o4 26 76 98

80 2,202 o 29 79 99

84 2,202 04 31 82 99

88 2,200 o4 33 B4 99

92 2,200 05 3 87 %

96 2,199 05 38 89

100 - 2,199 05 Lo 91

120 2.197 07 52 96

o 2.195 08 63 99

160 2,194 to 72 *

180 2193 12 79

200 2,192 b 83

250 2.191 20 94

300 2,190 26 98

350 2,189 3% 99

Loo 2.188 I *

450 2,188 48

500 2.188 55

600 2,187 68

700 2,187 78

800 2.187 86

900 2.186 91
1000 2.186 94

*  Power values below this point are greater than ,995,

8.3 POWER TABLES | ‘
! 1
| K
Table 8.3.10 ‘
Power of F testata= 01, u=15
n Fo .05 .10 .15 .20 .25 .30 .35 b0 .50 .60 .70 .80
2 3.409 01 o1 0 o0 o0z ©02 03 O 06 1o 15 23
3 2.656 of 01 .02 02 03 o 06 08 16 29 k6 6b
i 2.437 o1 ot 02 03 O 07 10 15 31 53 75 90
5 2332 01 o1 02 ©Oh 06 10 16 25 48 7h 91 98
6 2.272 ot 02 03 05 08 W 23 35 64 8y 91 &
7 2,232 O 02 03 06 10 19 N 77 % 99
8 2,203 0 02 03 07 13 2 39 56 86 98 &
9 2,182 o1 02 ok 08 16 30 L7 6 92 99
10 2166 01 02 05 10 20 36 55 7h 95 &
n 2,153 01 02 ©05 11 24 L2 63 81 98
12 29043 o1 03 06 13 28 48 69 8 99
13 2,134 ot 03 07 15 32 54 75 90 99
1 2,127 o1 03 o7 17 36 5 80 93 &
15 2,120 01 03 08 20 ko 65 B5 95
16 2115 01 03 09 22 4 69 88 97
17 2110 OF Oh 10 25 k9 & 91 9B
18 2106 01 o 1 27 53 78 93 99
19 2,102 o0z o4 12 30 57 8 95 99
20 2,099 02 0% 13 32 60 8 9% 99
2 2,096 02 o 1 35 6 87 97 *
22 2,03 02 o5 15 38 68 B9 98
23 2,001 02 o5 16 b 9t 99
24 2.088 02 05 17 i3 9 99
28 2.086 02 06 19 k6 77 9 99
26 2.084 02 06 20 49 79 95 *
27 2.083 02 06 21 st 81 9
28 2.081 02 07 23 sk 8 97
29 2,009 02 07 24 56 86 98
30 2.078 02 07 25 59 87 98
3 2,077 02 08 27 6 8 99
32 2.076 02 08 28 63 90 99
33 2,076 02 08 30 66 92 99
34 2,073 02 09 n 68 93 99
35 2,002 02 09 33 70 9% 99
36 2.07 02 09 3 72 95 *
37 2,070 02 10 36 M 95
38 2.070 02 10 37 76 96
39 2,060 0 1 39 77 9




308 8 F TESTS ON MEANS IN THE ANALYSIS OF VARIANCE AND COVARIANCE
Table 8.3.10 {continued}
£

n Fo 05 .10 .5 .20 .25 .30 .35 .o .50 .60 .70 .80
4o 2.068 02 11 4O 79 97 * * * * * * *
b2 2,066 02 12 43 82 98

[ 2.065 02 13 13 85 99

46 2,064 03 b 49 87 99

48 2,063 03 15 52 89 99

50 2,062 03 16 55 91 99

52 2.061 03 17 58 92 *

54 2,060 03 18 61 9

56 2,059 03 19 63 95

58 2,059 03 20 66 9

60 2,08 03 22 68 96

&4 2,057 03 2 73 98

68 2,06 o 26 77 98

72 2,065 o4 29 80 99

76 2.054 o4 32 84 99

80 2.053 o4 34 86 *

o 2,062 05 37 89

88 2,062 05 4o 91

92 2,051 05 43 92

96 2,051 06 45 94

100 2,050 06 48 95

120 2,048 07 61 98

k0 2.047 09 71 *

160 2.046 11 80

180 2,045 b 87

200 2.086 16 91

250 2.043 24 97

300 2,042 32 99

350 2,042 b0 %

400 2,041 48

450 2,041 57

500 2,041 64

600 2,040 76

700 2,040 86

800 2.060 92

900 2,040 95
1000 2,040 98

* Power values

below this point are greater than ,995,

|

1

I 8.3 POWER TABLES
|

ﬁ

Table 8.3.11 1
Power of F testata = .01, u=24 '

n Fe <05 .10 .15 .20 .25 .30 .35 .0 .50 .60 .76 .65
2 2,620 o1 ot o1 02 02 03 o 05 0§ {5 2 :
3 218 o o 02 02 o 05 08 12 26 Lg 62 3?
by 2.049 01 61 02 03 06 09 15 24 48 75 92 98
5 1.983 o1 02 03 05 08 15 2 38 ¢ g
6 T.o4h 01 02 03 06 1M 2 35 52 83 ;; 3? *
7 1.918 01 02 ok 08 15 29 k& 46 92 99
8 1.900 01 02 o4 10 20 37 58 716 97 *
9 1.886 o1 02 05 12 2 k5 & 85 g9

10 1.876 o1 03 06 1 30 53 75 0

" 1.867 02 03 07 17 36 60 82 ;u

12 1.80 02 03 08 20 1 6 87 9

13 1.856 02 03 09 23 47 73 91 o8

" 1.850 02 oh 10 26 53 79 ok g9

15 1,846 02 ol 11 30 58 83 96 99

16 1.842 02 oh 13 33 63 87 97 *

17 1.839 02 o b 37 68 90 98

18 1.8 02 05 16 b 72 93 g9

19 1.833 02 05 17 W4 76 95 g9

20 1.831 02 o5 19 48 80 96 #

21 1.829 02 06 20 s 8 97

2 1.827 02 06 22 55 8 o8

23 1.826 02 07 28 58 88 99

24 1826 02 07 26 62 90 99

25 1.823 02 07 28 65 2

26 1.82t 02 08 30 68 33 33

27 1.820 02 08 32 N 95 %

28 1819 02 09 3% 73 9

29 1.818 02 09 36 76 9

30 1.817 02 10 38 78 7

3 1.816 02 10 ko 8 33

32 1.815 02 11 42 8 98

33 1.815 02 12 4 8 g9

34 1.814 02 12 46 86 99

35 1.813 02 13 48 87 g9

36 813 02 13 50 8 99

37 1.812 03 1h 52 90 99

38 1.811 03 15 s 9 *

39 1.811 03 15 356 92
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Table 8.3.11 (continued) Table 8.3.12 !

Power of F testata= .05, u=1

f

n F .05 .10 .15 .20 .25 .30 .35 .o .50 .60 .70 .80 \

; n F .05 .0 5 .20 .25 .30 .35 ko ,50 .60 .70 .80
4o t.810 0 16 58 93 * * * * * * * ! <
42 1.809 03 17 62 95 !
by 1.809 03 19 65 96 18513 05 05 06 06 07 07 08 09 10 12 14 16
46 1.808 03 20 68 97 7.709 05 05 06 07 08 09 10 12 16 20 26 32
48 1.807 03 22 72 98 5,987 05 06 06 07 09 11 13 16 23 30 39 48

50 1,806 03 24 74 98

2
3
4
5
52 1.806 03 25 77 09 : ' 6 4,965 05 06 07 09 12 15 20 24 35 b7 60 ;L
s 1.805 ok 27 80 99 7 /19
8
9

56 1.805 o+ 29 82 99

58 1,806 o 30 84 % ) i yboh 05 07 09 12 17 2 29 36 52 68 80 9
60 1.806 ob 32 8 [ 10 hiny 05 07 09 13 18 25 32 k57 N3 85 93
64 1.803 o 36 8 ! 1" 4,351 o5 o7 10 & 20 27 35 44 62 77 88 95
68 1.802 05 39 92 - ‘ |} 4,301 o5 o7 10 15 22 29 38 47 6 81 91 97
72 1.802 05 43 94 ‘ 13 4,260 05 07 1 16 23 32 W st 70 8 93 98
76 1.800 05 47 95 1 4,225 05 08 1} 17 25 3 WM sk 73 87 95 98
80 1.800 06 50 97 15 4196 o6 08 12 18 26 36 47 57 76 89 9% 99
84 1.800 06 sk 98 i 16 4177 06 08 12 19 28 38 49 60 79 91 97 99
88 1.800 06 57 98 ! 17 4ak9 06 08 13 20 30 ko 52 63 82 93 98 ¥
92 1.799 07 = 60 99 ‘ 18 4,130 06 08 14 21 31 k42 sk 66 84 94 98
96 1,799 07 & 99 19 4,113 06 09 Wb 22 33 4 57 68 B 95 99
100 1.799 08 67 99 20 4,098 06 09 15 23 3 k6 59 0 88 96 99
120 1.797 10 79 * 21 4,085 06 09 15 24 36 LB 61 73 8 97 99
140 1.296 13 88 ; 22 4o73 06 09 16 26 37 5 6 15 9 97 *
160 1,796 16 94 it 23 4062 06 10 16 27 39 52 65 17 92 98
180 1.795 20 97 j 24 hos2 06 10 17 28 Lo 5% 67 78 93 98
200 1.795 24 98 . : 25 Lok3 06 10 18 29 h2 56 63 80 9% 99
250 1.79 35 * 26 4,034 06 10 18 30 U3 58 Al 82 95 99
300 1.793 k6 27 k026 06 10 19 31 45 59 72 83 95 99
350 1.793 57 28 4,020 06 n 19 32 hé 61 74 84 96 99
4oo 1.793 67 ; : 29 4,003 06 11 20 33 Ly 62 76 8 97 99
450 1.793 75 ‘
. 30 4007 0 11 21 3% 49 68 77 8 97 *
500 1.792 82 Nn Loot 06 1N 21 35 50 65 78 88 97
600 1.792 92 32 3.996 06 12 22 36 51 67 80 89 98
700 1.792 96 13 3.991 06 12 22 37 53 68 8 90 98
800 1.792 99 3 3.986 07 12 23 38 54 69 B2 9 98
900 1.792 99 .
1000 1792 & i 5 3.982 o7 12 2 39 5 N 8 92 99
: . - 36 3,978 07 13 2 Lo 56 72 8 92 99
: 37 3.97 07 13 25 ko 58 73 8 93 99
* Power values below this point are greater than ,995, 38 3.970 07 13 25 13 59 74 86 ok 99
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¢ Table 8.3.13 L
Table 8.3.12 (continuved/ . ; i

Power of F testata= .05 u=2 i

3
-
.
&
.
p
<o
.
pos
ur
.
N
Qo
.
N
W
.
w
o
.
w
w
.
=
Q
.
W
o
.
™
o
.
~
o
.
[=-4
=1

9.552 05 05 06 06 07 07 08 08 {0 12 15 18 .
5.143 05 a5 06 07 08 09 10 12 17 22 29 37 1
L.256 05 06 06 o8 09 n 1 17 24 33 L s

3.467 05 06 08 12 16 22 28 36 53 69 83 92

2
3
L
5
50 3.938 07 16 32 52 N 85 94 98 6 3.682 05 06 07 10 13 16 21 26 39 53 67 19
7
8
9 3403 05 07 09 13 18 28 32 bLo 5 75 88 o5

10 3.354 05 07 10 1 20 27 35 4s 64 81 91 97
60 3.922 08 19 38 60 79 9 97 99 i n 3.316 05 07 10 15 21 30 39 49 69 85 9% 98
[ 3.91%6 08 20 4o 62 B 93 98 * 12 3.285 06 07 3} 16 23 32 L2 53 8 96 99
68 3.912 08 21 b2 65 83 9% 98 ' 13 3.260 06 08 n 17 25 35 46 57 77 9t 97 99
72 3.908 09 22 k4 68 B85 95 99 1 3.238 06 08 12 18 27 38 4y 61 81 93 98 *
76 3.906 09 23 46 70 87 96 99
15 3.2260 06 08 13 20 29 ko 52 64 84 95 99
80 3.901 09 2 48 72 8 97 99 16 3.206 06 08 13 21 3 b3 55 67 86 96 99
84 3.898 09 25 50 7h 90 97 * | 17 3.191 06 09 1h 22 33 bs 58 70 89 97 99
88 3.895 09 26 52 76 92 98 18 3.179 06 09 1L 23 34 48 61 73 90 98 *
92 3.893 10 27 54 78 93 98 19 3,168 06 09 15 24 36 SO0 64 76 92 99
96 3.891 10 28 55 80 9 99
20 3.159 06 09 16 26 38 52 66 78 93 99
100 3.889 1o 29 57 81 o 99 21 3.150 06 09 16 27 4o sh 69 B0 95 99
120 3.881 1] 3 65 88 97 * 22 3.143 06 10 17 28 Lz 57 71 82 96 99
140 3.875 13 39 72 92 99 23 3.136 06 10 .18 29 43 59 73 84 96 *
160 3.871 W s 77 95 99 i 24 3.130 06 10 18 30 45 61 75 8 97
180 3.868 15 48 82 97 *
25 3026 06 10 19 32 b4y 63 77 87 98
200 3.865 16 52 86 98 26 3.119 06 1" 20 33 48 65 79 8 98
250 3.860 20 62 92 99 - 27 3.1b 06 1 20 3 50 66 8 90 98
300 3.87 23 70 9 * 28 .10 06 1 21 35 52 €8 8 g 99
350 3.855 26 76 98 29 3.105 06 12 22 36 53 70 83 92 99
hoo 3.853 30 82 99 : i
450 3.852 33 86 * 30 3,102 06 12 22 37 55 7 8 93 99
n 3.098 07 12 23 39 56 73 86 90 29
500 3.851 36 89 32 3.095 07 12 24 4o 58 75 87 94 99
600 3.849 L2 9% : 33 3.091 07 13 24 3] 59 76 88 95 *
700 3.848 47 97 34 3.088 07 13 25 42 61 7 89 9%
800 3.847 53 98
900 3.847 58 99 , 35 3.086 07 13 26 43 62 79 90 96
1000 3.846 62 99 H ’ 36 3.083 07 13 26 ub 63 80 91 97
37 3.081 07 1% 27 45 65 B 92 97
38 3.078 . 07 W 28 46 6 82 92 97

* Power values below this point are greater than .995, 39 3.076 07 1 28 47 67 83 23 98
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Table 8.3.13 (continued)

n Fo 05 .10 .15 20 .25 .30 .35 .40 .50 .60 .70 .BO
4o 3.074 07 15 29 LB 68 84 o4 98 & * * *
42 3.070 07 5 30 51 n B6 95 98
Ll 3.066 07 16 32 53 7 88 96 99
46 3.063 07 16 33 55 75 89 96 99
48 3.060 08 17 3% 57 77 9 97 99
50 3.058 08 18 36 s8 79 92 98 99
52 3.055 08 18 37 60 80 9 98 *
[1 3.053 08 19 38 62 82 9% 98
56 3.05% 08 19 4o 6l 83 9% 99
58 3,049 08 20 W1 65 8 95 99
60 3.047 08 20 42 67 8 96 93
o 3,044 o8 22 hs 70 88 97 99
68 3.0 09 23 47 73 90 98 &
72 3.039 09 24 49 75 92 98
76 3,03 09 25 52 78 93 99
1] 3.034 09 27 [ 80 9% 99
84 3.032 10 28 56 8 95 99
88 3.03 10 29 58 8 96 99
92 3.029 10 30 60 8 97 ¥
96 3,026 10 31 62 87 97

100 3,026 11 32 64 88 98

120 3.02! 12 38 713 % 99

140 3.018 1h [ 79 97 *

160 3.015 15 49 85 98

180 3.013 16 54 89 99

200 3.0 18 59 92 *

250 3.008 22 69 97

300 3.006 25 78 99

350 3.004 29 84

hoo 3.003 33 89

450 3.002 36 92

500 3.002 Lo 95

600 3,000 47 98

700 3.000 53 99

800 3.000 59 %

900 2.999 65

1000 2.999 70

* Power values below this point are greater than .995,

8.3 POWER TABLES 315
Table 8.3.14 f
Power of F testata=.05 u=3

n Fe W05 .10 (15 .20 .25 .30 .35 k0 .50 ,60 ,70 .80
2 6.591 05 05 06 06 07 07 08 09 11 13 17 20
3 hoss o5 o5 06 07 08 09 1 13 18 25 33 &2
[ 3490 05 06 07 08 10 12 15 18 27 38 50 62
5 3,239 05 06 07 09 12 15 19 24 36 50 6 76
[ 3.098 os 06 o8 10 13 18 23 29 L4 60 75 86
7 3.009 05 06 08 1" 15 21 27 35 52 69 83 92
8 2,947 05 07 09 12 17 24 31 Lo 89 77 B9 96
9 2,901 05 07 09 & 19 27 36 4 66 82 93 98
10 2.867 05 07 10 15 20 30 4 s o7 8§ 9% 99
H 2,839 06 07 1 16 24 33 b4 855 6 9 97 99
12 2,817 06 08 11 17 26 3 48 60 8 93 98 *
13 2,798 06 08 12 19 28 39 52 64 B4 95 99

1 2.783 06 08 13 20 30 b2 55 68 8 97 99

15 2,770 06 08 13 21 32 k5 59 M 90 98 *

16 2.758 06 09 14 23 34 48 62 75 92 98

17 2,748 06 09 15 2 37 51 65 78 94 93

18 2,70 06 09 16 26 39 53 68 80 95 99

19 2,732 06 09 16 27 W 56 7N B3 9 99

20 2,725 06 10 17 28 i3 59 73 85 97 *

21 2,719 06 10 18 30 k5 & 76 87 98

22 2,716 06 10 18 31 47 63 78 88 98

23 2,709 06 10 19 32 49 6 80 90 99

24 2,706 06 11 20 3“ 51 68 82 91 99

25 2.700 06 " 21 35 53 70 84 93 99

26 2.696 06 " 22 37 s 72 8 94 99

27 2,692 07 12 22 38 56 7% 8 9% 99

28 2,689 07 12 23 39 58 75 88 95 *

29 2.686 07 12 2 W 60 77 89 96

30 2,683 07 13 25 42 61 79 90 96

3 2,680 07 13 25 43 63 B0 91 97

32 2,678 07 13 26 45 65 8 92 97

33 2.675 07 14 27 46 66 83 93 98

3k 2,673 07 6 28 47 68 sk 9k 98

35 2,671 07 1h 29 48 69 85 9% 98

36 2.669 07 % 29 5 70 8 95 99

37 2668 07 15 30 5 72 87 9 9

38 2.666 07 15 N 52 73 es 96 99

39 2,666 07 15 32 53 4 89 97 99
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|
1
Table 8.3.14 (continued) i

Table 8.3.15
£ Power of F testata= .05, u=4 :
f
n Fe 05 .10 15 .20 .25 .30 .35 .o .50 .60 .70 .80

. . . .50 .60 .70 .80 L
o 2,663 07 16 32 s 76 90 97 99 & * * * » Fe 05 .10 15 20 25 .30 35 A0 S ! I
L2 2.660 o7 16 34 57 78 91 98 * i

v o oned o 18 oa & o» 5092 05 05 06 07 08 08 09 10 13 15 13 2

2

[ 0 0 12 th 20 28 38 48

£l s s s d Yok o 06 o o6 fo 13 16 2 30w % 6
2 b AR S O 16 21 26 4 55 70 8
g: z.g:g og 20 :z 67 gg 9% 99 2 2.866 05 06 07 09 12 6
2. o 2 : A 690 0O o6 09 12 16 22 30 39 58 76 88 9

2 e o5 3 ke w3 * g 5‘632 og 07 ©09 13 19 26 35 k5 65 83 93 98
8 nls 8 mone ;2w 98 9 20606 05 07 10 i 21 29 ko 51 72 88 95 99

60 2.643 09 22 47 7 91 98B

. % 0 te 16 23 33 W 56 78 92 98 *
o 2 oo . > S { :? §.§§3 06 o; " 17 26 37 4y 61 82 9 99
> A SR S B (I 12 2.550 06 o8 12 19 28 ko 53 66 8 96 99
4 el 4 A % i % % 13 2,525 06 o8 13 20 3 43 57 70 89 98 *
76 265 10 28 58 8 g7 x 1h 2.513 06 08 13 22 33 47 &1 7 92 98
& oL S I S /4 06 09 1 23 3% 50 65 78 4 99
o bz N N 8 B e Shoh 06 o9 15 25 3B &3 6 B 95 99
s S S R . ! 17 2.486 06 09 16 26 ho 56 7 83 96  *
% AR B S L 18 2479 06 09 17 28 43 59 7h 8 97
% 269 M35 65 2 99 19 2473 06 10 17 30 45 62 77 8 98
100 2.628 n 36 n 93 99
2.h468 06 10 18 n 47 65 79 90 99
4o Al A S §? 2463 06 10 19 33 50 67 82 91 99
60 2es e o5 ox » 22 2,458 06 11 20 3 52 69 8 93 99
160 2,619 16 55 91 99 i 23 2.4 06 11 21 36 sh 72 B85 94 99
180 2O8 186 24 2450 06 11 22 37 5 h B 95 ¥
200 2.616 19 66 96
Wb 06 12 2 39 8 76 89 96
300 e w RO% % w07 12 O w0 w90 %
3%0 ey B %o . 27 2441 07 12 24 42 62 B0 91 97
igg :'2:: ;§ 3? 28 2.439 07 13 25 W3 64 81 92 9g
b0 2,610 b1 96 ’ | 29 2.636 07 13 26 45 66 83 93 9
S 0 2,436 07 13 27 b6 67 B 94 98
200 eoe 5 ' it 242 oy 1h 2 48 6 8 95 99
500 e B 0% : 32 2430 07 W 29 4 71 8 9 99
260 g'ggg 32 * 33 2428 07 W 30 51 712 gs 96 gg
900 2.607 72 3 2.427 07 15 30 52 7 8 97
1000 2.607 77 ' { 35 2.b25 07 15 31 8% 75 90 97 99
3% 2.42h 07 15 32 sz 73 g; 3; *
* Power values below this point are greater than .995. ;g g-zgf 3; :2 3130 §7 ;9 92 98
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Table 8.3.15 (continued) ‘ Table 8.3.16
Power of F testata= 05, u=5
f
f
n Fe 05 .10 5 .20 .25 .30 .35 B0 .50 .60 .70 .80
n Fe 05 .10 L5 .20 .25 .30 .35 .o .50 .60 .70 .80
Lo 218 07 17 36 60 81 9 99 & * * * *
b2 2006 08 18 37 62 B3 95 99
I 26 08 1B 39 65 85 96 99 2 4,387 o5 05 06 07 08 08 03 10 13 17 2 26
"3 2412 08 19 W 67 87 97 99 3 3,106 05 06 06 07 09 N 13 15 22 31 b2 53
48 2410 08 20 43 69 B9 97 * I 2773 05 06 07 08 11 i 17 2 33 b & 75
50 2409 08 21 W 71 90 8 s 2,621 05 06 07 10 13 17 22 29 4 61 76 B8
52 207 08 21 46 73 9 ge 6 2.63 05 06 08 11 15 21 27 35 sk 72 86 9k
sl 2,406 08 22 L8 75 92 99 7 2.478 05 o7 o039 12 18 2 33 42 63 8 92 98
56 255 09 23 4 77 93 9 8 2438 05 o7 03 20 28 38 4 71 87 9% 9
58 2.0 09 24 51 78 o4 99 9 2,409 05 o7 10 15 23 32 W s 77 92 98 *
60 2403 09 24 52 80 95 99 10 2391 06 07 1N 17 25 36 48 61 8 95 99
64 2,401 09 26 55 B3 96 * l 1 2368 06 08 12 19 28 ho 53 66 8 97 99
68 2,399 09 28 58 8 97 12 2,3 06 08 13 20 3t W& B T 90 98 *
72 2,397 t0 29 61 87 98 13 2,362 06 08 13 22 33 k7 62 15 93 99
76 2,3% 10 31 6 8 98 103 2,332 06 09 M 2 36 81 66 79 95 99
80 2,395 10 32 66 91 99 15 2.326 06 09 15 25 39 55 j0 82 96 ¥
8 2,39 11 3w 69 92 99 16 2316 06 09 16 27 k2 8 73 85 97
88 2.393 1 35 N 9% 99 : 17 2,310 06 10 17 29 W 61 76 88 98
92 2,392 11 37 713 95  * 18 2,306 06 10 18 30 k7 6 79 90 99
96 2,391 . 1 39 75 96 19 2.299 06 10 19 32 49 67 82 92 99
100 2,390 12 40 77 96 20 2,294 06 " 20 34 52 70 8 93 99
120 2,387 13 b 85 99 21 2,290 06 N 21 36 s 72 8 % *
140 2.385 15 sh 91 99 22 2,286 06 w1 2 37 57 75 88 95
160 2.383 17 61 9% & , 23 2,288 06 11 22 39 59 77 90 96
180 2,382 18 67 97 ' 24 2,280 06 12 23 MW 61 79 9N 97
200 2.381 20 72 98 25 2.277 07 12 2 W3 63 8 92 98
250 2.379 25 82 * 26 2.275 07 13 25 ik 65 83 93 98
300 2.378 29 89 27 2,272 07 13 26 46 67 84 oh 98
350 2,377 3 94 28 2,270 07 33 27 47 69 B 95 99
4oo 2,376 39 96 29 2.268 07 28 b9 7 87 96 99
450 2,376 4 98 i
30 2,266 . 07 & 29 5 73 88 96 99
500 2,376 k9 99 3 2,266 07 14 30 52 74 90 97 99
600 2.375 57 * 32 2.263 07 15 3 s 76 91 97 *
700 237 65 33 2.262 07 15 32 5 77 92 98
800 2.374 72 34 2.260 07 16 33 57 19 9 98
900 2,374 78
1000 2,374 82 . 35 2.259 07 16 34 58 80 93 98
. : 36 2.257 07 16 35 60 81 9 99
37 2,256 07 17 36 61 B8 95 99
* Power values below this point are greater than .995, 38 2,255 [ 14 17 37 62 84 95 99
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Table 8.3.16 (continued) i Table 8.3.17 ‘
. Power of F testata=.05,u=6
f |
n Fe L0510 .15 ,20 .25 .30 .35 .0 .50 .60 ,70 .80
. . .20 .25 .30 .35 Jio .50 .60 .70 .80
4o 2,263 08 18 39 65 8 9 99 * * * x  * " Fe 205 .10 .15 5 j
:: 2,251 08 19 :l 68 ga 9g * ) ) |
2,29 08 20 43 70 89 9 0 06 07 08 08 09 11 1k 18 23 29 :
4 2248 o8 21 ks 72 91 98 : 26 0p 06 06 06 09 M 13 16 A 3 b6 s
48 2,246 08 21 k7 74 92 99 H 2.673 05 06 07 09 1 i 18 23 36 51 66 80
50 275 08 22 W 76 9 99 ‘ 05 06 o8 10 13 18 24 31 48 & 8 9
52 2.k 09 23 50 78 o 99 P % % o o8 1 16 2 30 3B 8 77 90 9%
5k 2,243 09 24 s2 80 95 99 7 2326 05 07 09 13 19 26 35 k6 68 85 95 99
56 2,22 09 25 sh 82 96 * 8 2.291 05 07 10 15 21 30 A1 53 76 91 98 *
58 2.2 09 26 111 83 96 9 2.266 06 07 1] 16 2 15 47 60 82 94 99

60 2.240 09 26 57 85 97

; 2.246 06 08 11 18 27 39 52 66 8 97
o 228 o B 0 ¥ B ‘ :? 2.231 06 08 12 20 30 k3 57 71 90 98
o r /A - S 12 2.219 06 08 13 22 33 47 62 76 93 99
43 a0 2 & 2 0% 13 2.209 06 09 1 23 3 51 67 80 95 99
76 223 10 33 69 93 99 1h 2.200 06 ©09 15 25 39 5 71 83 97 *
80 2233 11 3% 72 9% 99 ) L, 8 98
1 2.1 06 09 16 27 4 59 7
o 222 0 B % 12 z..gi 06 10 17 29 L4 6 18 8 98
oy o N BB ! 17 2180 o5 10 18 31 4 6 8 91 99
% At S S L 18 2.176 06 10 19 33 51 69 8 93 99
% 220 1z d2 809 19 2471 06 11 20 35 53 72 8 9
100 2.229 12 [N 82 98 4 88
0 2.168 06 n 21 37 56 7 95
s 27 w2 B % gu 2,166 06 M 22 39 58 77 90 9
e 2as 6 BN ¥ 22 2160 06 12 23 ko & 79 91 97
o 22 m % . 23 20158 07 12 24 42 63 81 93 98
180 2223 20 72 98 2k 2056 07 12 25 &b 65 83 94 98
200 2,222 23 77 93
2 2.1 07 13 26 46 68 85 95 99
300 pme B ot 2 z.nii 07 13 27 48 70 87 9 99
350 Tae 3 e 27 2.1b9 o7 & 28 50 72 B8 96 99
2% Zhe 33 ) 28 247 07 W 29 5174 85 97 99
450 2,217 &9 99 29 2.145 07 1 30 53 75 9 97
30 2.tk 07 15 3 55 77 92 98
%00 i'::; gg * 3 2162 07 15 33 56 79 93 98
700 2.2,6 n ’ 32 2.141 07 16 34 58 80 9 99
800 2216 77 33 20 07 16 35 g B2 9k 9
900 2,216 83 3k 2138 07 17 36 & 3 95 99
oo wme W » 35 2037 07 17 31 6 & 9% 99
36 2,136 07 17 38 64 gs 9% 99
* Power values below this point are greater than ,995. gg g'gf. gg :g '30(91 2? 8; g; 9*9
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Table 8.3.17 (continued) Table 8.3.18
Power of F testata= .05 u=8
£
f
n Fe .05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
n Fe 05 .10 .15 .20 .25 ,30 .35 W0 .50 .60 .70 .80
4o 2.132 08 19 ﬁ 70 89 9g * * * * * *
42 2,131 08 20 72 9 9 2 3.230. 05 05 06 07 0 09 10 1N {5 20 26 b
[T 2,129 08 21 K 75 92 99 3 2,510 05 06 06 08 10 12 15 18 28 Lo 53 67
ll:g g:gg gg ;g ‘5'3 ;; g‘; g,? b 2305 05 06 07 09 1z 16 21 27 42 s9 75 87
: " 5 2,208 05 06 08 11 15 20 27 35 55 7h 88 46
50 2,125 09 2 52 81 96 99 6 2,152 05 07 09 12 18 25 3b s 66 8 95 99
52 2.126 09 25 5k gz 96 * 7 2.115 05 07 10 b 21 30 W 53 76 9 98 *
s 2,123 09 26 56 44 97 8 2,089 06 07 10 16 24 35 47 60 83 95 99
gg ::;g gg g; zg 5 gg 9 2,000 06 08 11 18 27 40 sk 67 8B 98
‘ 10 2,055 06 08 12 20 31 45 60 73 92 99
60 2121 09 28 61 88 98 ! 1" 2.043 06 08 13 22 3% L9 65 73 95 99
64 2,119 10 30 65 91 99 12 2,033 06 09 14 24 38 54 jo 83 97
68 2.118 10 32 68 92 99 13 2,025 06 09 15 26 W1 58 7% 87
;{2) :::Z :? ;2 ;‘l‘ 3‘; 9*9 % 2,018 06 09 17 29 45 62 78 90 99
: 15 20013 06 10 18 31 48 66 B2 92 g9
80 2,015 11 38 76 96 16 2,008 06 10 19 33 51 70 B85 9% *
84 2.1k 12 ho 78 9; i 17 2,006 06 10 20 35 sS4 73 87 95
88 2.1k 12 '.:f gl 98 18 2,000 05 11 21 37 57 76 90 97
;g §:;; :; P 6134 39 19 1.996 06 n 22 4 60 79 9 97
: 20 1.993 06 12 23 42 63 8 93 98
100 2.112 13 'oz 86 9*9 21 1.990 07 12 25 b 66 B4 94 99
120 2,110 15 iu 92 22 1.988 07 13 26 b6 68 86 95 99
140 2,108 17 gg 23 1.986 07 13 27 48 n 88 96 99
llgg g . : gg ; ? ;‘5 . 24 1.98¢ 07 13 28 550 73 8 97 99
25 1982 07 14 29 52 75 91 98 &
200 2.105 23 81 * 26 1.980 07 1h 3 b 77 92 98
250 2,106 29 90 27 1978 07 15 32 5% 79 93 9
300 2,103 ‘3.5 93 28 1.977 07 15 33 58 81 9 99
h50, 2,102 52 % : ;t') : 97 07 16 36 2}: g‘g 9% 99
. 973 07 17 37 96 99
500 2.101 27 32 1.972 07 17 38 65 8 97
600 2.101 7 33 1971 08 18 33 67 88 97
;gg i . : gg ;g 34 1,970 08 18 L1 69 89 98
900 2.100 87 35 1.969 08 19 &2 70 9 98
1000 2,100 91 36 1.968 08 19 43 72 91 98
37 1.967 08 20 4 73 92 99
38 1.967 08 20 4é 75 93 929

* Power values below this point are greater than .995, v 19 1.966 08 21 L7 76 ol 99
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Table 8.3,18 (continued) ‘ Table 8.3.19
Power of F testata = .05, u= 10
f
f
n Fe .05 .10 .15 ,20 .25 .30 .35 .40 .50 .60 .70 .80
n F £05 .10 15 .20 .25 .30 .35 M40 .50 .60 .70 .80
Lo 1.965 08 2t 48 77 9% 99 * * * * * *

2 1.964 o8 22 50 80 95 99 2.854 05 05 06 07 08 09 10 12 16 23 i 39

2133 05 06 07 0 13 17 23 30 &y & 8 92
2,03 05 06 08 11 16 22 30 4 6 80 g2 98

58 1.957 10 3 67 92 99

10 1.9286. 06 08 13 22 3 S0 66 80 96 *
60 1.956 0 32 69 93 99 i 3] 1,913 06 09 14 24 38 55 n 8 97
&4 1.955 o 3% 7295 * 12 1.910 06 09 s 27 h2 60 76 88 98
68 1.954 1 37 75 96 13 1.903 06 09 17 29 4 65 81 91 99
72 :923 :; ‘33 g? gg . 14 1.898 06 10 1B 32 50 69 8 o4
7 .9

15 1.893 06 10 19 3 53 73 87 95
80 1,952 12 43 83 98 16 1.889 06 11 20 37 57 76 90 97
8 1.951 12 bs 85 99 i 17 1.885 06 N 2 39 €60 79 92 98
88 t.950 13 48 87 99 18 1.882 06 12 23 k2 64 82 3 98
95 :.gzg :i gg gg 3? 19 1.879 06 12 2% W 67 85 95 99
9 .

: 20 1.877. 07 12 26 47 69 8 9 99

100 1.949 14 sk 92 : 20 1.8k 07 13 27 k9 72 89 97 99
120 1.947 17 63 96 22 1.872 07 13 29 5 75 91 98 *
1o 1.946 19 n 98 : ! 23 1.870 07 14 30 sh 77 92 98
: gg : g:z ilz‘ gg S:? i 24 1.869 07 th 3 56 79 93 99

25 1.867 07 15 33 £8 81 % 99
200 1.9 27 88 26 1.866 07 15 3 60 8 95 99
250 1.943 k1 95 27 1.864 07 16 36 62 85 96 99
300 1.942 41 98 28 1.863 07 17 37 64 8 97 *
350 1.941 48 99 29 1.862 07 17 38 66 88 97
400 1.941 5h * |
450 1.941 60 30 1.861 07 18 Lo 68 8 98

: 3 1.860 08 B iy 70 90 98

500 1.940 66 : 32 1.859 08 19 &3 72 91 99
600 1.940 75 : 33 1.858 08 19 M 73 92 99
;7;00 1 .gg gg : 34 1.857 08 20 45 %5 9 99
00 1.
900 1.940 92 35 1.856 08 21 47 76 94 g9
1000 1.939 95 36 1.856 08 21 48 78 95 99

37 1.855 08 22 49 79 95 99

38 1.854 08 22 51 81 96 *

* Power values below this point are greater than .995. : 39 1.854 08 23 52 82 9%
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Table 8.3.19 {continued}

48 1.849 09 28 63 90 99
50 1.848 09 30 65 92 99
52 1.848 10 31 67 93 99
sh 1.847 10 32 69 *
56 1.846 HY 33 IAl 95

58 1.846 10 35 73 96

60 1.85 10 36 75 9

64 1.845 n 38 78 97

68 1.8 11 W B

72 1.843 12 43 8% 99

76 1.842 12 hé 86 99

80 .82 13 48 88 99

84 1,860 13 51 90  *

88 1.841 14 53 92

92 180 14 55 93

9% 1.840 15 57 9%

100 1.839 15 60 95

120 1.838 18 69 98

140 1.837 21 77 99

160 1.836 24 84 *

180 1.836 27 88

200 1.835 30 92

250 83 38 97

500 1.832 72
600 1.832 81
700 1.832 88
800 1.832 92

* Power values below this point are greater than .995,

gt e

8.3 POWER TABLES

Table 8.3.20

Power of F testata = .05, u = 12

321

n Fo W05 .10 L5 20 .25 .30 .35 .o .50 .60 .70 .80
2 2,606 05 05 06 07 08 09 1 13 18 25 34 b
3 2,148 05 06 07 08 10 13 17 22 3W 50 66 80
4 2,010 05 06 08 10 1 8 26 33 52 N 8 95
5 1,94 05 06 09 12 17 24 33 W4 67 8BS 95 99
6 1.905 05 07 10 % 21 30 42 s4& 8 93 99
7 1.879 06 o7 N 16 25 36 50 6+ 87 97 *

8 1.860 06 08 12 19 29 43 58 712 92 99

9 1.87 06 08 13 21 33 43 65 79 95 *

10 1.836 ©06 08 14 24 38 55 71 85 98

1 1,827 06 09 15 26 b2 60 77 8 9

12 1.821 96 09 17 29 46 65 Bl 92 99

13 1.815 06 10 18 32 81 70 85 o4 *

th 1.810 06 10 19 3% 55 M 88 96

15 1.806 06 1 21 37 558 78 91 97

16 1,802 o0 11 22 4o 62 8 93 98

17 1,799 06 12 26 43 66 B8 95 99

18 1,796 07 12 25 46 69 87 9% 99

19 1,79 07 13 27 W8 72 8 97 99

20 1,792 07 13 28 51 75 91 9B  *

21 1790 07 & 30 % 77 92 98

22 1.788 07 % 31 56 B0 9 99

23 1.786 07 15 33 59 82 95 99

2h 1,788 o7 15 3 61 84 96 99

25 1.784 07 16 36 63 86 97 *

26 1.782 07 17 37 65 B3 97

27 1.780 07 17 39 68 B9 98

28 1.780 07 18 b 70 90 98

29 1.779 08 18 42 72 92 99

30 1.778 08 19 Ly 73 93 99

31 1.777 08 20 45 75 99

32 1.776 08 20 47 77 9% 99

33 1.776 08 2] 48 78 95 99

34 1.775 08 22 50 80 96

35 .77 08 22 51 81 96

36 1774 o8 23 53 83 97

37 1.773 08 24 54 8. 97

38 1.773 08 24 55 85 98

39 1.772. 09 25 57 86 98
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Table 8.3.20 (continved) § Table 8.3.21 !
Power of F testata=.05u=15 :
f :
f p
n F, .05 .10 15 .20 .25 .30 .35 .ko .50 .60 .70 .80
i n Fo <05 .10 .15 .20 .25 .30 .35 .ho .50 .60 .70 .80
4o .71 09 26 58 87 98 & * * * * * * !
Boim o8R8 %3 | g mowowowowoom o Momom oy |
6 1.769 09 30 66 92 99 1992 05 06 07 o0 1 15 19 25 39 57 1% 8 i

L] 1.768 10 3 68 9% *

&
50 1.768 10 32 n 95 1.826 05 07 09 13 19 27 38 50 74 91 98

2
134 1.880 05 06 08 1t 15 20 28 37 58 78 92 98 i
E H k7 & 8 6 *
52 1.767 10 4 73 95 E 6 1.794 05 07 10 15 23 e 7 1 5 9
3 7
; 8
: 9

1.772 06 07 1n 18 28 41 56 Al 92 99
?'é :';22 :? ;g ;; ;; 1.;;7 o6 08 12 2 33 48 65 79 96 *
. 1.745 06 08 th 2w 38 55 72 85 98
58 1.7 11 38 718 97 .
E 10 1,736 06 09 15 27 43 61 718 90 99
22 :.;:z :: zg gg gg 3 1 1.729 06 09 17 0 W7 67 83 93 *
68 1.763 12 ks B 99 ) 12 1726 06 10 18 33 52 72 By 9
72 1,763 12 47 88 g9 | 13 iis o8 1o 20 36 &z 11 %0 %
76 1,762 13 50 90 * ! 1k 1715 06 1t 20 39 61 Bl 93 9
l 1 1711 06 11 23 42 65 B4 95 99
gg :';gf :: g; ;; 12 1.308 06 12 25 b5 69 87 9% 99
88 1,760 15 £8 95 ; 17 1706 o7 12 26 4 72 90 97 *
92 1.760 15 60 96 ; 18 1704 o7 13 28 s 76 92 98
96 1.760 16 62 96 19 1,702 07 1 30 sk 78 93 99
' 20 1.700 o7 W 3t 57 81 95 99
:gg |‘ . ;:g : g gz ;; ! 21 1.698 07 15 33 60 84 96 99
140 1758 23 B2 22 1.696 07 16 35 63 8 97 *
160 1757 26 88 : 23 19695 07 16 37 65 88 97
180 1.75%6 29 92 } 24 V.69 07 17 39 6 89 98
. 25 1693 07 V7 Lo 70 91 98
§gg :~;§g z? gg ‘ 26 1.692 07 18 k2 72 92 99
300 1,755 50 * 27 1.691 08 19 W b 93 99
350 1.754 58 : 28 1.690 08 20 L6 % 9% 99
zoo 1.754 65 . 29 1.689 08 20 47 718 95 %
* LT | 30 1.688 08 21 49 go gg
00 1.754 : 3t 1.687 08 22 51 2
g°° '-;23 QZ : 32 1.687 o8 22 52 83 97
700 1.753 9t 33 1,686 08 23 54 8k 98
800 1.753 95 _ ‘ 34 1.686 08 24 56 8 98
00 1. :
1600 1_;§; ;é 35 1.685 09 25 57 87 98
! 36 1.684 09 25 59 88 99
f 37 1.684 03 26 60 By 99
* Power values below this point are greater than .995, | ;g :.Zg; g; g 2; ;? 3;
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Table 8.3.21 {continued)
; Table 8.3.22
£ Power of F test ata = .05, u=24
n Fe L05 .10 .15 .20 .25 .30 .35 4o .50 .60 .70 .80 ‘ f
|
| ;
4o 1,683 09 28 65 92 99 k k k kK Kk * | n Fe £05 .10 .15 .20 .25 .30 .35 4O .50 .60 .70 .6
42 1.682 09 30 68 93 *
il 1.681 10 32 70 95 ,
4§ 180 10 33 73 9% R+ A - S L LA I
48 1.680 10 35 75 97 i 1665 05 o7 op 12 15 e o B ;h ;? ga 9*6
0 1.6 10 36 79
! es N ® 0 % I H 1627 05 07 10 15 2k 35 4y 64 88 98 &
4 1.678 11 39 81 98 | 1.605 06 08 12 19 30 b5 61 75 95 %
56 12678 11 W 83 99 | ! 1.50 06 08 13 22 36 b 71 85 98
58 1.6 0 43 Bk 99 ‘ 1.580 06 09 15 26 b3 62 79 91 99
* 9 1.572 06 09 17 30 49 69 8 95 #
.6 12 W 86 ;
23 ;s% 12 47 89 33 1o 1.566 06 10 19 3 55 76 90 97
68 1,676 13 S0 91 % | " 1.561 06 11 21 38 & 8 9 99
8 1.e6 3 s 9 ! 12 1.557 06 N 23 k2 66 8 96 99
72 s 13 9 | 13 1.5 06 12 25 47 71 8 98 ¢
. ‘ h 1.557 07 13 27 st 76 92 98
L7 1 i
B w13 & 9% | 15 1se 07 13 29 sk B0 % 99
88 1.674 16 64 97 1 16 1.546 07 14 32 58 8 96 99
92 1613 17 67 98 [ 17 1545 07 15 3k 62 8 9 *
9% 1.673 17 69 98 18 T.543. 07 16 36 65 83 o8
° 19 1.542 07 16 38 69 91 99
100 1.673 18 n 99
120 1.6;2 21 B % ! 20 1.540 07 17 W 72 92 99
140 1.671 25 88 21 1.539° 07 18 43 75 94 99
160 1.670 29 92 ; 22 1538 08 19 45 77 95 %
180 1,670 33 96 i 23 1.537 o8 20 48 80 96
3 2l 1,53 08 21 50 82 97
20/ 1.670 |
zsg 1 .629 ‘30; 3; 25 1.536 08 22 52 8% 98
300 1.669 56 * 26 1.535 08 23 54 86 98
350 1.668 &4 . 27 1.535 08 24 57 87 99
100 1.668 72 28 1.533 08 25 59 89 o9
450 1.668 78 29 1.533 09 25 6t 90 99
: 30 1.532 09 26 63 92 99
ggg I‘ :2227! g? ; 3 1.532 09 27 65 93 &
700 1.667 95 | 4 1.531 09 28 66 9
800 1.667 97 33 1.531 09 29 68 ob
900 1667 99 E 1.531 09 3 70 95
1000 1.667 99 35 1530 09 31 72 96
gg :.530 10 32 73 96
. ; 529 10 34 75 97
* Power values below this point are greater than .995, 38 1.529 10 38 % o7

39 1.529 10 36 78 98
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Table 8.3.22 (continued)] ' : Table 8.3.23 ‘
Power of F testata=.10,u=1 1
¢ ;
. f
n Fe W05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80 !
n F .05 .10 .I5 .20 .25 .30 .35 .o .50 .60 .70 .80
I 1620 10 37 79 98 Kk x  *  x  x  x  x % <
:5 ’ ::gig :: z? gﬁ gg 8526 10 1 12 13 13 W 15 17 20 23 27 30
46 1,527 11 43 8 99 sshs 10 10 12 13 15 17 19 22 28 35 b2 50

48 1.527 12 ks B8 * 3776 10 11 13 1k 17 20 23 27 3 b5 55 6

2

k)

i
0 1.526 12 &4 0 5 3.458 10 1l 13 6 19 23 27 32 43 55 66 76
gz ‘-§25 12 “; ;' 3 3285 10 12 1 17 20 26 3N 37 50 6 7% 8
7
8
9

. 528 3977 o 12 15 19 23 29 35 L4 56 63 8 8
26 1.?25 :; ?; ;; 3102 10 12 15 20 25 32 39 k7 62 75 B85 92
58 1.525 13 55 94 3.048 10 13 16 21 28 35 43 51 66 8 89 95
P 132 Iy 10 3,007 10 13 17 23 30 37 46 55 71 83 92 97
64 x.gzz th 23 3? 1" 2.975 11 13 18 24 32 ko 49 58 75 87 4 98
68 1.524 15 64 98 12 2.949 1 h 19 25 34 L3 52 62 78 89 96 99
72 1.523 16 67 98 13 2.927 n 1h 19 27 36 b5 55 65 81 9t 97 99
7 .53 17099 i 20909 1t 1k 20 28 37 8 58 68 83 93 98 99
o 1 b n » 1 2.894 n 15 21 29 39 50 60 70 86 95 98 *
8 53 1816 % lg 2.881 11 15 22 3 b 52 63 73 88 96 99
88 1.522 19 79 * 17 2,869 11 15 23 32 43 s 65 75 89 97 99
% joa2 » M 18 2,859 11 16 23 33 us 56 68 77 91 97 99
% PS8 19 50850 11 16 24 3% 4 8 70 79 92 98 %

120 I S 20 2843 11 16 25 36 W8 60 72 8 93 98
ho o w2 21 2083 11 17 26 37 s0 6 73 8 o 99
140 1.620 3 96 22 2.829 u 17 26 38 51 64 75 84 95 99
160 1.520 36 98 23 2.823 n 18 27 39 53 66 17 86 96 99
180 1.520 b1 99 24 2.818 12 8 28 4o sh 67 78 87 96 99
200 1.519 47 * 25 2.813 12 18 29 k2 56 69 80 8 97 99
250 1.519 59 26 2.809 12 19 29 4 sy 70 8 8B 97 ¥
3% hy 27 2805 12 19 30 4 58 72 83 90 98
200 e B 28 2.801 j2 19 3t ks 60 73 8 91 98
420 vae e 29 2797 12 20 32 46 6 T 8 92 98
50 1.51 90 .
30 2.79%% 12 20 32 47 62 76 8 9 99
é00 he % 31 2791 12 20 33 48 63 77 8 B 9
600 1.518 98 32 2.788 12 21 3 k9 65 78 88 9% 99
a0 el B 13 2786 12 21 3 s 6 719 8 95 99
ggg :.513 * 34 2,783 12 21 35 51 67 8 9 95 99
51
o e 35 2.781 13 22 36 52 6 81 9 9% 99
36 2.779 13 22 36 53 69 8 91 96 *
* 37 2.777 13 22 37 & 0 8 92 9
Power values below this point are greater than .995, 38 2.775 13 23 38 55 n 84 92 97

39 2,773 13 23 38 56 72 85 93 97
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Table 8.3.23 (continued)

335

n F, 05 L1000 L5 .20 .25 L300 .35 M0 50 60 .70 LBO
Lo 2.1 13 24 39 57 73 8 93 97 * * * *
42 2.768 13 2 ko 59 75 87 9 98
[ 2,766 13 25 42 60 77 88 95 98
Y3 2,762 th 26 43 62 18 90 96 99
48 2,760 14 26 4 63 B0 9 9% 99
50 2,758 1h 27 ks 65 81 92 97 99
52 2,756 1% 28 L7 66 82 92 97 99
sh 2,754 1L 28 L8 68 8l 93 98 99
56 2.752 W 29 k9 69 85 94 98 *
58 2,756 15 30 50 7t 86 95 98
60 2,749 15 30 51 72 87 95 99
6k 2,746 15 3t 53 74 89 96 99
68 2,743 16 33 5 76 90 97 99
72 2,7 16 3 58 78 92 98 99
76 2.739 16 35 §9 B0 93 98 *

80 2,738 17 36 6 82 o4 99
84 2.73 17 38 63 84 95 99
88 2,73 17 39 65 8 96 99
92 2.733 18 4o 67 8 96 99
96 2.732 18 W 8 88 97 99
100 2,73t 18 L2 70 8 97 *
120 2.727 20 [ 76 93 99

tho .72 22 53 82 9% 99

160 2.1 2 57 86 98 *

180 2,719 25 62 B9 99

200 2.8 27 65 92 99

250 2.716 n 7 96 *

300 2.4 35 B0 98

350 273 39 8 99

hoo 2,712 ['V] 89 *

450 2.1 b 92

500 2.1 4o 94

600 2,716 55 97

700 2,709 61 98

800 2.709 66 99

900 2.708 70 *

1000 2,708 74

* Power values below this point are greater than .995,

8.3 POWER TABLES
Table 8.3.24
Power of F testata=.10,u=2
f
n Fo L0510 .15 .20 .25 .30 .35 .o 50 .60 .70 .80
462 10 n 12 13 13 i 15 1720 23 27 32
; g.u63 10 1 12 h 15 17 20 22 29 36 iS5 53
b 3006 10 n 13 15 17 20 24 28 38 i 59 70
. 10 12 13 16 20 24 29 3 w6 55 7 81

2 5.235 10 12 1 18 22 27 33 ko sh 68 80 89
7 2.624 10 12 15 19 2L 30 37 us 61 75 86 93
8 2.575 11 13 16 21 27 3 M50 67 8 90 9g
9 20538 1 13 17 22 29 31 4 5 12 85 9 9

2611 1 13 18 24 31 ko 49 59 76 g9 9% 99
;? 2.589 n 14 18 25 33 43 53 63 80 92 97 %?
12 2.47 M 19 27 36 46 56 67 eu 94 98
13 2456 11 1k 20 28 38 kg 60 70 8 95 99
1% 2. mn 15 2t 30 ko 51 63 13 89 97 99
1 2.434 n 15 22 3 b2 54 66 76 9 97 *
12 2425 1 16 23 32 uw 56 68 79 92 98
17 2007 11 16 20 3 46 59 71 81 o 99
18 2410 11 16 2 35 48 61 73 8 95 99
19 2404 11 17 25 37 S0 63 75 8 96 99
20 2.398 12 17 26 38 52 65 11 8 97 *
21 2.393 12 17 27 39 53 67 19 88 97
22 2.389 12 18 28 W 55 69 8 90 98
23 2.385 12 18 29 4 5 7 8 91 98
24 2.381 12 19 29 B3 59 13 84 92 99

2,378 12 19 30 45 60 7 86 93 99
52 2.375 12 19 3 b6 62 76 87 % 99
27 2.372 12 20 32 47 63 78 88 95 99
28 2,369 12 20 33 48 65 79 8 95 99
29 237 12 20 33 S0 66 80 90 96 *
30 2365 12 21 3 51 68 82 91 96
3 2.363 13 21 35 52 69 8 92 97
32 2,361 13 22 36 53 70 84 93 97
33 2.359 13 22 37 54 n 85 93 98
3 2.357 13 22 31 s 13 8 9 98
35 2356 13 23 38 56 7% 87 95 98
36 235k 13 23 39 5 75 88 95 98
37 2.352 13 24 ho 59 76 89 96 99
38 2,351 13 24 4 60 77 89 9% 99
39 2350 13 2 W & 78 90 96 99
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Table 8.3.24 (continued) Table 8.3.25

Power of F testata=.10,u=3

£
n Fo 05 .10 5 .20 .25 .30 .35 ko .50 .60 .70 .80
n Fe .05 .10 15 .20 .25 .30 .35 .40 .50 .60 .70 .80
:o 2.348 12 25 Zz 2: 7 9 97 99 * * * *
2 2,346 1 25 3 Bl 92 97 99
P 23 W% 26 43 65 B2 93 of % b9t 10 N 1tz 12 13 15 16 17 20 25 29 35

2
46 2.3k2 b 27 W6 67 84 o9h 98 ; oA S SR+ S H < S 4
18 2311 W 28 48 69 8 95 99

50 2.333 14 28 49 n gg 96 99 z

52 2,33 15 29 50 72 96 99

sh 233 15 30 52 7h By 97 99 : S Mo 16 m o e i om o os N
56 2,33 15 31 53 75 90 97 99 9

58 2,33 5 N sh 76 91 98 &

10 2.263 11 b 18 25 33 43 sb 64 B2 93 98 *
& 23315 32 s g8 9z 98 1 2226 1 W 19 27 36 4 58 68 8 95 99
p 3o B o 93 9B 12 2213 M W 20 28 38 S0 61 72 8 97 99
2 iae o ¥ o6 2 %2 13 2202 11 15 2 30 kos3oEs 76 o1 98
nootme N % oo N x> 1 292 1 15 22 31 W3 % 68 79 93 9
5 208 11 16 23 33 ks 59 71 B2 95 99
Sz 17 39 67 88 97 % é 2077 1 16 2k 35 48 & b B 9% 99
B 230 18 ko e 8 % 7 2071 11 16 25 36 50 6k 77 86 9 %
b £ L < 18 20166 11 17 26 38 52 66 79 88 98
% 2321 19 &b 7k 93 99 19 2.162 12 17 27 39 sh 69 81 90 98
20 257 12 18 28 W1 56 71 83 9 99
O < O . S A 4 2 205 12 18 29 k3 B 73 85 9B 99
o 25 ;5 8 9 : 22 2150 12 18 29 Wk 60 75 8 99
PP A S L A 23 2147 12 19 30 k6 62 77 8 85 99
M *
A 2 2mh 12 19 3 k7 6h 73 89 95
- 25 22 12 20 32 48 6 80 90 9%
X Iy omonmoo% 26 2139 12 20 33 50 67 8 91 97
30 2309 37 88 9 27 237 12 21 3 51 69 8 91 97
30 238 i e X 28 213 12 21 3 5 70 8 93 58
o0 2,307 b6 94 29 2133 13 21 36 5 72 LA
b0 2307 k9 %6 30 232 13 2 s &1 s 98
31 2130 13 22 38 57 75 %5 99
e 23 o 2 32 2129 13 23 39 8 76 89 9% 99
M0 2308 6 * 3 2027 1323 39 sy 71 % %99
800 2,305 7 3h 2,126 13 23 0 0 7 9t 97 99
%00 2.305 76
35 2,124 13 24 L) 61 79 N 97 99
1000 2,304 80 36 2,123 13- 24 b2 63 B 92 98 99
37 2,122 13 25 43 64 B2 93 98 &

* Power values below this point are greater than .995. 39 2,120 b 26 ks 66 B4 94 9B
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: | le 8.3.26
Table 8.3.25 {continued) | Toble

) .Power of F testata=.10,u =4

52 2,111 15 3t 55 78 92 98
Sh 2110 15 32 5 79 93 9
56 2.109 15 33 58 ] 9l 99

2
3
"
5
50 2.112 15 30 53 76 9 98 6 2.184 10 12 15 19 28 3N 38 4 63 79 B89 9%
7
8
9
58 2,108 16 33 59 82 95 99

10 2.074 n W 19 zg 33 47 28 63 87 96 9*9
60 2.107 16 3h 60 83 95 1 2.061 " h 20 2 3 50 2 7 90 97
&4 2,106 16 36 63 8 96 gg 12 2,00 1M 15 21 30 W sh 6 77 92 98
68 2.104 17 37 66 88 97 * 13 2.0 n 15 22 32 W 57 70 8t ol 99
72 2.103 17 39 68 89 98 1 2,034 1] 16 23 3 b6 60 73 8h 96 99
76 2,12 17 M 70 91 98

15 2,027 11 16 24 35 49 63 76 86 97 *
8o 2,701 18 k2 712 92 99 16 2022 11 16 25 37 st 66 79 88 98
84 2.100 18 W 7 93 99 17 2.017 " 17 26 39 54 6 8 90 98
i 2,100 12 b5 76 99 18 2002 12 17 27 WM 5% 71 8 92 g9
92 2,099 19 46 78 95 99 19 2.009 12 18 28 42 58 7h 86 93 99
96 2,098 20 48 80 *

20 2.005 12 18 29 4 @ 7% 87 9% 99
100 2.098 20 kg 81 96 21 20002 12 19 30 4 63 78 89 95  #
120 2,09 22 56 87 99 22 1.999 12 19 31 47 65 B0 90 9
1%o 2.0 24 62 92 99 23 1,997 12 20 32 49 67 8 92 97
160 2.093 26 68 95 % 24 .99+ 12 20 33 51 6 83 93 97
180 2.092 28 72 97

25 1.992 12 21 3 52 70 8 94 98
200 2.091 30 77 98 26 1.990 12 21 35 54 72 8 95 98
250 2,089 35 8 99 27 1.989 13 21 36 55 7h 87 95 99
300 2,088 4o ot * 28 1.987 13 22 37 57 75 89 9 99
o 2088 A5 s 29 1986 13 22 38 8 77 90 97 99
oo 2.087 50 97
b0 2087 4 98 30 1.98 13 23 39 60 78 91 97 99

3 1.983 13 23 ko 61 79 92 97 99
500 2.087 58 99 32 1.982 13 o 4 62 81 92 98 *
Soo e &+ 33 L0 1 2k dz o g B2 33 9

. . 1 2 6 3 9!

800 2,086 57 3“ 1979 3 5 3 5
%00 2085 8 35 1,978 ¥ 25 W 66 8 o 99
1000 2,085 85 36 1.977 11 26 45 67 85 95 99

37 1.977 b 26 W6 69 8 96 99

38 1.976 1% 26 47 70 87 96 99

* Power values below this point are greater than .995, 39 1.975 W27 W N 88 96 99
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|
; It
Table 8.3.26 (continued) ! Table 8.3.27 i bl
|
|

{
Power of F testata = .10,u =5 i 'E
¢ \
f |
n Fo 05 .10 05 .20 .25 30 .35 W40 50 .60 .70 L8O
n Fe .05 .10 s .20 .25 .30 .35 4O 50 60 .70 80 ‘
Lo 1.974 |1 27 &9 72 89 97 99 * * * * * 1 4
42 1.973 i 28 51 74 90 97 * it
4h 1.9 w29 52 76 9 98 2 3.108 10 M 1 1213 15 16 18 22 28 3% 4} h
46 1.970 15 30 54 78 93 98 3 2.3% 10 N t2 W 16 19 22 26 35 k6 58 €9
48 1,969 15 31 56 79 % 99 4 2,196 10 1 13 16 19 23 28 3 47 62 75 85
50 1.968 15 32 57 8 9% 99 5 2003 1o 12 % 18 22 28 3k b2 58 7h 86 ok ?
52 1.967 15 33 59 8 95 99 6 2.049 10 12 15 20 25 32 ho 49 68 83 93 97
54 1.966 16 3w 6 84 96 99 7 2.014 n 13 16 22 28 37 b6 56 75 89 96 99
56 1.966 16 35 62 B85 9 * 8 1.990 1 13 17 23 32 W 52 63 81 93 98 *
58 1,965 16 35 64 86 97 9 1.91 n th 18 26 35 46 57 €8 8 96 99
60 1,96k 16 37 65 88 97 10 1957 1 19 28 38 s 62 73 90 97 *
ok 1,963 17 38 68 90 98 n 1.946 11 o2 30 sh 66 718 93 99
68 1.962 17 4% 70 9 99 12 1.937 11 15 22 32 4 857 70 8 95 99
72 1.961 18 b2 73 93 99 13 1.929 13} 15 23 34 LY 61 74 84 96 *
76 1.960 18 b 75 94 99 th 1.923 " 16 24 36 50 64 77 87 97
80 1.959 19 45 77 95 * 15 917 N 16 25 38 52 67 8 90 98
84 1.959 19 47 79 9% 16 1,912 11 17 26 L 55 70 83 92 99
88 1,958 19 48 8t 97 ; 17 1.908 12 17 27 W 58 73 8 93 99
92 1.957 20 50 8 97 18 1,906 12 18 29 43 60 76 8 95 99
96 1.957 20 52 84 98 19 1.902 12 18 30 us 62 78 89 96 *
100 1.956 21 53 86 98 20 1.899 12 19 3 4y 65 80 91 96
120 1.95% 23 60 9 99 21 1.86 12 19 32 b9 67 82 92 97
1o 1.953 25 67 95 * 22 1,896 12 20 33 51 69 84 93 98
160 1.952 28 73 97 23 1.891 12 20 34 52 n 86 94 98
180 1.951 30 77 98 24 1.890 12 21 35 5h 73 87 95 99
1.951 2 82 99 25 1.888 12 21 36 56 75 88 96 99
ggg '-ggo gg 8 3 26 1.886 13 22 38 5 76 90 97 99
300 199 43 94 . 27 1.885 13 22 39 5 718 9 97 99
350 1.948 k9 97 28 1.883 13 23 Lo 61 9 92 98 9
100 1.948 53 98 29 1.882 13 23 &y 62 8t 93 98 *
. 8
uso R » 30 l.ggl 13 24 :z 6t 82 94 98
00 1.947 62 * 3 1.880 13 24 3 65 83 94 99
ZOO 1.947 70 32 1.879 13 25 Wb 66 85 95 99
700 1.947 76 33 1,878 13 25 4s 68 86 95 99
800 1.946 32 34 /l .877 14 26 46 69 87 96 99
900 1.946 86 i
1000 1.946 89 35 1.876 b 26 47 70 88 97 99
36 1.875 W 27 48 72 8 97 99
37 1.874 14 27 k49 73 90 97 *
* Power values below this point are greater than .995. 38 1.874 14 28 50 74 90 98

39 1.873 1 28 51 75 91 98
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Table 8.3.27 (continued) ‘ Table 8.3.28

Power of F testata=.10,u=6

.66 .70 .80

3
-
.
o
i
.
o
-
w
.
~
[~
.
N
v
.
-
o
.
w
A53
-
&
o
»
Yy
o

2.827 10 1" 11 12 13 " 17 19 23 29 36 L)
2,075 10 " 13 16 20 24 30 36 50 66 79 89

5 1.996 10 12 14 18 23 29 36 45 62 78 89 96 D
50 1,867 15 3 61 85 96 * 6 1.950 11 12 15 20 26 3 b3 53 nn 86 95 99 :
52 1.866 16 35 63 8 97 7 1.919 1t 13 17 22 30 39 43 60 79 92 98 *
11} 1.866 16 36 65 88 98 8 1.898 1 13 18 2h 33 by 55 &6 85 95 99
56 1,865 16 37 66 83 98 9 1.882 1 W 19 27 37 k8 61 72 89 97 *
58 1.864 16 38 68 90 98
10 1.870 11 1h 20 29 HO 53 &6 7 93 99
60 1.86 17 39 69 9 99 n 1.860 11 15 21 3 43 57 70 81 95 99
64 1.863 17 72 93 99 12 1.852 1" 15 23 33 L6 61 74 85 97 *
68 1.862 18 43 75 9 99 13 1.846 N 16 24 35 50 64 78 88 98
72 1.861 18 45 77 95 * th 1.840 ] 16 25 38 53 68 8 90 98
76 1.860 19 46 79 96
! 15 1.835 1 17 26 Lo 5 N 84 92 99
80 1.860 19 48 &1 97 : 16 1,831 12 17 27 k2 58 7% 8 9% 93
84 1.869 20 50 8 98 17 1.827 12 18 29 b4y 6 77 88 95 *
88 t.858 20 52 B85 98 18 1.824 12 I8 30 46 64 79 90 96
92 1.858 21 sk 8 98 19 1821 12 . 19 31 48 6 82 92 97
96 1.858 21 55 88 99
20 1.819 12 19 32 50 68 8 93 98
100 1.857 22 57 89 99 ! 21 1.817 12 20 3 52 71 85 94 98
120 1.855 24 64 94 * i 22 1.815 12 20 35 54 73 87 95 99
140 1.8 27 71 97 { 23 1.813 12 2t 36 56 75 89 96 99 |
160 1.853 29 77 98 i 24 1.811 13 21 37 57 77 90 97 99
180 1.853 32 81 99
25 1.810 13 22 38 59 78 91 97 99
200 1.852 34 85 * 26 1.808 13 23 ho 61 80 92 98 *
250 1,851 Lo 92 : 27 1.807 13 23 W 63 82 93 98
300 1.851 b6 96 i 28 1.806 13 2 k2 23 83 9 99
350 1.850 52 98 ; 29 1.805 13 24 43 66 8 95 99
400 1.850 57 99 ‘
450 1.849 62 * ’ 30 1.803 13 25 [ 67 86 96 99
i 3 1.802 13 25 46 69 87 96 99
500 1.849 66 32 1.802 14 26 47 70 88 97 99
600 1,849 74 33 1.801 W 26 48 7N 89 97 *
700 1.849 80 b 1.800 1h 27 49 73 90 97
800 1.849 84 I
900 1.8.8 89 | 35 1,799 th 27 50 91 98
1000 1.848 92 I 36 1.798 14 28 &} 75 91 98
37 1,798 W% 29 52 76 92 98
38 1.797 14 29 53 78 93 99
* Power values below this point are greater than .995. 39 1.797 11 30 ohy 79 94 99
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Table 8.3.28 (continued} ) Table 8.3.29
Power of F testata=.10,u=8

f
n Fe 05 .10 .15 20 .25 .30 L35 .40 .50 .60 .70 .80 f
n Fe W05 L1015 .20 .25 .30 .35
4o 1.796 15 30 55 B0 94 99 * * * * * *
42 1.795 15 3 57 82 95 99 2 2.h69 10 " n 12 ih 15 17
[ 1,794 15 32 59 8 96 99 3 2,038 10 n 13 15 17 2 25
[ 1.793 15 33 61 85 97 * ! 4 1,903 10 12 & 17 2t 26 32
48 1.792 16 35 63 87 97
5 1.847 0 12 15 19 26 32 Ko
50 1.79 16 36 65 88 98 6 1.811 1 13 16 21 29 37 48
52 1.9 16 37 67 89 98 7 1.787 1t 13 17 24 33 b3 55
54 1,790 16 38 68 9 99 8 1770 1N W19 26 36 b8 61
56 1790 17 39 70 92 99 9 1.757 N W 20 29 4o 53 67
58 1.78 17 ko 1N 92 99
: 10 1787 n 15 21 3t Wy 58 72
60 1,789 17 W 7393 99 i n t.740 Ot 15 23 3% b8 63 76
64 1.788 18 43 76 95 * ! 12 1.733 n 16 2h 36 51 67 80
68 1,787 18 45 78 96 13 1.7286 1N 16 26 39 5% 7 [
72 1.786 19 47 81 97 14 1.723 1" 17 27 W 58 74 87
76 1.785 19 49 83 98
15 1.720 12 18 28 44 61 77 89
80 1,785 20 51 B85 98 . 16 1.716 12 18 30 4 65 80 91
84 1.784 20 53 86 99 i 17 1.713 12 19 3 48 67 83 93
88 1,784 21 55 88 99 18 1.7 12 19 33 51 70 85 9%
92 1.783 21 57 89 99 19 t.709 12 20 3 53 72 8 95
96 1,783 22 58 9 99
20 1,707 12 20 35 55 15 89 96
100 1.783 22 60 92 * 21 1.705 12 21 37 7 17 09N 97
120 1.781 25 68 96 22 1.703 13 22 38 5 79 92 98
140 1,780 28 75 98 i 23 1.702 13 22 4o 61 81 93 98
160 1.779 3 80 99 v 24 1.700 13 23 ] 63 83 9 99
180 1.779 33 85 *
| 25 1.699 13 2b 42 65 84 95 99
200 1.778 36 89 ‘ 26 1.698 13 2 sk 67 86 96 99
250 1,778 43 9 i 27 1,697 13 25 45 69 87 96 99
300 1.777 49 97 28 1.696 13 25 4 70 88 97 *
350 1.777 85 99 : 29 1.695 13 26 48 72 90 97
4oo 1.776 60 * S
450 1.776 66 30 1,694 14 27 43 A 91 98
3 1.693 W27 50 75 92 98
500 1.776 70 32 1.692 w28 52 76 92 99
600 1.776 78 33 1.692 T 29 53 78 93 99
700 1,775 84 34 1.691 W 29 s 79 9k 99
800 1.775 89
900 1775 92 - i 35 1.691 14k 30 55 B0 95 99
1000 1,775 94 36 1.690 14 30 56 81 95 99
37 1.689 15 31 58 83 9 99
38 1.689 15 32 59 Bh 96 *

-% Power values below this point are greater than .995, ‘ 39 1,688 15 32 60 85 97
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v ‘ Table 8.3.30 [

i
3
\ i
Table 8.3.29 (continued} ‘ U i
Power of F test ata= .10, u =10 :‘\ i
i 1
¢ !
f
. g0 .20 L2 30 . 'Y B 60 . .8 . :
. e i ’ i >0 v % n Fo 05 .10 .15 .20 .25 .30 .35 4o .50 .60 .70 .80
&y . } 61 86 * * * * * * * '
hg : gg? IZ ;2 63 87 35 2 2.248 10 M 12 13 W 16 18 2t 27 36 ks #
by 1.686 16 35 65 89 98 3 1.904 10 N 13 15 18 22 26 32 b5 60 74 85
46 1.686 16 37 67 90 99 L} 1.799 10 12 14 17 22 28 35 43 61 78 90 96
4 1.6 16 8 6 2 .
8 % 3 0 i ! 5 1747 11 12 15 20 26 3 M sh 7k 89 96 99
50 1.686 16 39 7N 93 99 6 1717 1 13 17 23 31 W 52 63 83 95 99 *
52 1.684 17 4o 73 9 99 7 1.697 1N 13 18 25 35 47 59 71 90 98 *
(13 1.683 17 k2 75 94 99 8 1,683 n L] 20 28 39 £3 66 78 9l 99
56 1.683 17 43 76 95 % 9 1.672 11 15 21 3 Ly 58 72 o 96 *
58 1.682 18 L 78
10 1,666 1 15 23 34 48 63 77 88 98
60 1.682 18 ks 79 96 i n 1.657 n 16 24 37 52 68 82 91 99
64 1.681 18 48 82 97 12 1.652 11 16 26 39 56 72 85 93 99
68 1.681 19 50 84 98 13 1.648 n 17 27 42 59 76 88 95 *
72 1.680 20 52 86 99 14 1.644 12 18 29 bs 63 79 91 97
76 1.679 20 s& 88 99
15 1.641 12 18 30 47 66 82 93 98
80 1.679 21 56 90 99 16 1,638 12 19 32 50 69 8 94 98
84 1.679 21 58 9N 99 ; 17 1.635 12 20 33 53 72 87 96 99
88 1.678 22 60 93 * 18 1.633 12 20 35 55 75 89 97 99
92 1.678 23 62 94 19 1.631 12 2 37 51 718 9N 98 *
96 1.677 23 64 95
20 1,630 12 22 38 60 8 93 98
100 1,677 24 66 95 24 1.628 13 22 ho 62 82 94 99
120 1.676 27 7h 98 22 1,627 13 23 W 6 84 95 99
140 1.675 30 - 81 99 23 1,625 13 2h W43 66 B6 96 99
160 1.675 33 86 * 4 2 1.624 13 24 LYy 68 87 97 99
180 1,678 36 90
25 1.623 13 25 46 70 89 97 *
200 1.674 39 93 26 1.622 13 26 W7 72 90 98
250 1.673 Ly 97 27 1.621 1h 26 49 74 91 98
300 1.673 5499 28 1,620 14 27 so 76 92 98
350 1.672 61 * 29 1,620 W 28 52 77 93 99
Loo 1,672 66 ;
450 1.672 72 30 1.619 W 28 83 79 9% 99
31 1.618 4 29 55 80 95 99
500 1,672 76 32 1.618 h 30 56 81 95 99
600 1.671 By 33 1.617 th n 57 83 96 99
700 1671 89 ‘ 34 1,616 15 N 59 8 9% *
800 1,671 93 \
900 1,671 96 35 1.616 15 32 60 8 97
1000 1.671 97 t 36 1.615 15 33 61 8 97
’ 37 1.615 15 33 62 87 98
38 1.615 15 3% 64 88 98

* Pawer values below this point are greater than .995. 39 1.614 15 35 65 89 98
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Table 8.3.30 (continued)

n Fe 05 .10 .15 .20 .25 .30 .35 4o 50 .60 .70 .80
Lo 1.614 15 35 66 90 98 * * * * * * &
h2 1.613 16 37 68 91 99
by 1.612 16 38 70 93 99
46 1.612 16 Lo 72 9% 99
48 1.611 17 W 74 95 *
£0 1.611 17 42 76 95
52 1.610 17 Iy 78 96
shy 1.610 18 s 8o 97
56 1.609 18 46 B 97
£8 1.609 18 L8 83 98
60 1.609 19 49 84 98
64 1.608 19 52 86 99
68 1.607 20 s4 89 99
72 1.607 21 56 90 99
76 1.607 21 59 92 *
80 1.606 22 61 93
8k 1.606 23 63 9
[:1:] 1,605 23 66 95
92 1.605 24 68 96
96 1.605 25 70 97

100 1,605 25 n 97

120 1,604 29 79 99

140 1.603 32 86 *

160 1.603 36 90

180 1.602 39 93

200 1,602 43 96

250 1.601 5t 99

300 1.600 59 *

350 1.600 66

Loo 1.600 72

hso 1.600 77

500 1.600 81

600 1.600 88

700 1.600 93

800 1.599 96

900 1.599 98

1000 1.599 99

* Power values below this point are greater than .995.
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Table 8.3.31
Power of F testata=.10,u =12
f

n Fe .05 .10 .15 .20 .25 .30 .35 .o .50 .60 .70 .80
2 2,097 10 1 1"oo13 15 17 19 22 29 39 b9 &
3 1.809 10 n 13 15 19 23 28 3 49 65 79 89
3 1.9 10 12 1 18 23 30 38 hy 66 82 93 98
5 1675 11 12 16 21 28 37 4y 58 78 92 98 %
3 1.649 11 13 17 2h 33 56 68 8 97 99
7 1.631 1"tk 19 27 37 50 76 93 99 *
8 1.619 11 W 20 30 kL2 56 70 82 96 &
9 1.610 N 15 22 33 k7 62 76 87 98
10 1.603 n 16 2h 36 1) 68 81 9N 99
1 1.597 11 16 25 39 56 72 86 94 99
12 1592 M 17 27 b2 60 77 89 9% %
13 1.588 12 18 29 45 64 80 92 97
th 1.585 12 18 31 48 67 84 94 98
15 1.582 12 19 32 51 71 8 95 99
16 1.580 12 20 3% sk 74 89 96 99
17 1.578 12 20 36 s 77 9 97 *
18 1,576 12 21 37 89 79 92
19 157 13 22 39 62 82 ok 99
20 1.573 13 23 W1 64 B4 95 99
21 1.571 13 23 43 66 B6 99
22 1.570 13 2 Wk 69 88 97 %
23 1.569 13 25 4 71 89 97
24 1.568 13 26 48 73 91 98
25 1.567 13 26 49 75 92 98
26 1.566 14 27 51 77 93 99
27 1.565 W 28 52 78 9% 9
28 1.565 b 29 s B0 95 99
29 1.566 14 29 55 8 95 99
30 1.563 |13 30 57 83 96 *
3 1.563 14 3t 58 84 97
32 1.562 15 32 60 85 97
33 1.562 15 32 61 87 98
k1 1,561 15 33 63 88 98
35 1.561 15 34 64 By 98
36 1,560 15 35 65 90 99
37 1.560 15 35 67 90 9
38 1.560 16 36 68 91 99
39 1.559 16 37 69 92 99
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Table 8.3.31 {continued) Table 8.3.32

Power of F testata=.10,u =15

n Fo .05 .10 .15 .20 .25 .30 .35 Mo .50 .60 .70 .80
n Fe 05 .10 .15 .20 .25 .30 .35 ko .50 .60 .70 .80
ko 1.559 16 38 70 9 9 * * * * * * *
2 1.558 16 39 73 99 !
Ly 1,58 17 W 75 95 * 2 1.0 10 11 12 1315 17 20 2 32 k3 55 67 1
46 1.557 7 k2 77 3 1,707 10 1 13 16 20 26 30 38 s 11 8 93 ‘
48 1.557 17 W& 79 97 by 1633 10 12 15 19 25 32 W 5 72 8 96 9 i
50 1,556 18 45 81 97 5 1.596 11 13 16 22 30 4o 52 63 8 95 99 * :
52 1.556 18 W47 82 98 : 6 157 1 13 18 25 35 48 6 7h 91 98 * s
sl 1.55% 18 48 84 98 7 1.560 " " 20 29 W 55 69 81 96 99 :
56 1.555 19 50 B85 99 8 t.sh9 11 15 22 32 k6 62 76 B 98 * :
58 1.555 19 51 8 99 9 1.541 ] 15 23 36 5 6 82 92 99
60 1.5 19 53 88 99 10 1.535 1 6 25 39 56 73 86 95 *
64 1,556 20 5 90 99 ; 1 1,531 12 17 27 W & 78 90 97
68 1,553 21 58 92 * 12 1.527 12 18 29 b6 65 82 93 98
72 1.553 22 60 93 13 1.523 12 1B 31 49 69 8 95 99
76 1.553 22 63 95 1 1.521 12 19 33 52 7 8 9% 99
80 1.552 23 65 96 15 1.518 12 20 35 56 16 997 *
84 1.552 24 68 96 16 1.516 12 20 37 59 19 93 98 .
88 1.552 26 70 97 17 1.5 12 22 39 62 82 9% 99
92 1.560 25 72 98 : 18 1513 13 22 W en 85 96 99
96 1.551 26 74 98 | 19 1.51 13 23 43 67 8 97 99
100 1.550 27 16 99 20 1510 13 2% 4 70 89 97 *
120 1.550 31 B4 & 21 t.509 13 25 4 72 90 98
140 1,549 3 B9 22 1.508 13 26 48 74 92 98
160 1,549 38 93 23 1.507 13 26 50 76 93 99
180 1,549 b2 96 t 24 1.506 W 27 52 718 9% 99
200 1.548 W6 97 25 1,505 14 28 s& 80 95 99
250 1,548 55 99 26 1.504 1h 29 56 82 96 *
300 1.548 63 * 27 1.504 w30 57 8 97
350 1.547 70 28 1,503 t N 59 8 97
400 1.547 76 29 1.503 15 32 61 86 98
450 1.547 81 i
/ 30 1.502 15 32 62 88 98
500 1.547 85 o 31 1,502 15 33 64 89 98
600 1.547 91 | 32 1.501 15 3 65 90 99
700 1,547 95 ' 33 1.501 15 35 67 91 99
800 1.546 97 3h 1.500 15 36 68 92 99
900 1.546 99
1000 1.546 99 ; 35 1.500 16 37 70 93 99
{ 36 1,500 16 38 71 93 99
37 1499 16 39 72 9 *
% Power values below this point are greater than .995. 38 1.499 16 39 7h 95

39 1.499 16 ko 75 95
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Table 8.3.32 (continued)

n Fe 05 L1000 .15 20 .25 .30 .35 ko 50 .60 ,70 .80
40 498 17 W 76 96 * * * * * * * *
42 1.498 17 43 78 97
LT 1.497 17 L3 80 97
46 1.497 18 46 82 98
48 1,496 18 48 8 98
50 1.496 18 4s 86 99
52 Lbge 19 5 87 99
sh f.95 19 53 88 99
56 1.495 20 sh 90 99
58 .95 20 56 91 *
60 149k 20 57 92
64 v.hoh 21 60 94
68 TJ49%% 22 63 95
72 1,493 23 66 96
76 1,493 24 68 97
80 th93 28 71 98
84 t.h92 25 73 98
88 .92 26 75 99
92 1.492 27 77 99
96 1492 28 79 99
100 1.491 29 8 99
120 1.491 33 88 L4
140 1490 37 93
160 1.490 42 96
180 1.b90 46 98
200 1489 50 99
250 1.489 60 *
300 1.489 68
350 1.488 75
Loo 1.488 81
450 1,488 86
500 1.488 90
600 1.488 95
700 1.488 97
800 1.488 99
900 1.488 99
1000 1,488 *

*  Power values below this point are greater than ,995.
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Table 8.3.33
Power of F testata= .10, u =24
f
n Fo .05 10 L1585 ,20 .25 .30 .35 .40 .50 .60 .70 .80
2 1.689 10 11 12 W 16 19 23 28 40 sk 69 8
3 1.536 10 12 1% 17 22 29 37 4 66 8 94 g9
4 1,485 " 12 16 21 29 39 51 63 84 96 99 *
5 1460 N 13 18 2 36 49 63 76 93 99 *
6 1.445 11 14 20 30 43 58 73 85 98 *
7 143 1 15 22 3% 50 67 8 92 99
8 1,427 1" 16 25 39 5 74 88 95 *
9 1422 1 17 27 43 62 8 92 98
10 1.7 12 18 29 48 68 8s 95 99
1 1.8 92 19 32 52 73 8 97 99
12 1411 12 20 35 5 718 92 *
13 1,409 12 21 37 60 8 9% 99
1 t.koy 12 22 Lo 64 85 96 99
15 1,405 13 23 k2 67 88 97 *
16 1.404 13 24 45 7 90 98
17 1.402 13 25 47 0™ 92 99
18 1.401 13 26 50 77 9% 99
19 1.400 13 27 52 79 95 99
20 1.399 14 28 5 B2 96 *
21 1,399 % 29 57 84 97
22 1.3 1« 30 59 8 98
23 1.397 14 31 61 88 98
24 1.397 15 32 63 89 99
25 1396 15 33 65 91 99
26 1,395 15 35 67 92 99
27 1.395 15 36 59 93 99
28 1.395 15 37 n 9% *
29 1,39 16 38 73 95
30 1.39% 16 39 4 95
31 1.393 16 ho 76 96
32 1.393 16 4y, 77 97
13 1.393 17 42 19 97
34 1.393 17 43 80 98
35 1.392 17 45 82 98
36 1.392 17 6 83 98
37 1.392 17 47 8 99
38 1.392 18 L8 85 99
39 1.391 18 49 8 99
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Table 8.3.33 (continued) The 33 tables in this section yield power values for the F test when,
in addition to the significance criterjon (@) and ES (f), the degrees of free-
f dom for the numerator of the F ratio (u) and sample size (n) are specified.
They are most directly used to appraise the power of F tests in a completed
n Fe <05 .10 5 .20 .25 .30 .35 .ho .50 .60 .70 .80 research post hoc, but can, of course, be similarly used for a research plan,
the details of which (e.g., significance criterion, sample size) can be varied
P CA N S AR S R to study consequences to
u2 1391 19 52 8 99 power.
iy 1391 19 sk 91 % The tables give values for a,u, f andn:
46 1.390 20 56 92
48 1.3% 20 8 93 , . . .
: 1. Significance Criterion, a. Since F is naturally nondirectional (see
22 : :233 g: 22 3: above, Section 8.1), 11 tables (for varying u) are provided at each of the a
;2 :;g; z 2‘; g‘; f levels, .01, .05, and .10.
58 1,389 23 67 97
e 23 6 98 2. Degrees of Freedom of the Numerator of the F Ratio,u. At each signi-
23 :.gga % 72 98 ‘ : ficance criterion, a table is provided for each of the following 11 values
R S I : of u: 1(1) 6 (2) 12, 15, 24. For cases 0, 1, and 2, all of which invelve a com.
76 1.387 27 B0+ ’ parison of k =u + | means, the number of means which can be compared
80 1387 29 83 : ; using the tables is thus k = 2 (1) 7(2) 13, 16, and 25. For tests on interactions
g?i :;g; g? g; (Case 3), u is the interaction df, and equals (k — 1)(r — 1), or (k—1)r—1)
92 1.387 32 88 : (p— 1), etc., where k, r, p are the number of levels of interacting main effects.
% 13863 %0 ' Thus, u = 12 for the interaction of a 4 x 5 ora 3x 7 or a 2 x 13 factorial
100 }:ggg % % . design or the three-way interaction of a 2 x 4 x 5,a2x3x7,0ral3x3x4
140 1.385 &5 o8 factorial design.
',gg }322 22 7 For missing values ofu (7, 9, 11, etc.), linear interpolation between tables
200 1385 61 will yield quite adequate approximations.
250 1,384 72
ggg ;-;g‘d g‘; 3. Effect Size, f. Provision is made for 12 values of f: .05 (.05) .40 (.10)
koo 1,38 91 , -80. For Cases 0 and 2, f is simply defined as the standard deviation of stan-
450 1.38 9 dardized means [formula (8.2.1)]. Its definition is generalized for unequal
500 ::ggz ;; i‘ n (Case 1) and for interactions (Case 3), and the relevant formulas are given
700 1,38 * '7 in the sections dealing with those cases. For all applications, conventional
333 ::gg levels have been proposed (Section 8.2.3), as follows:
1000 1.384

\

small:  f= ]9,

* Power values below this point are greater than .995.

medium: f = 25,

large:  f= 40.

- 4. Sample Size, n. This is, for Cases 0 and 2, the n for each of the k
P sample means being compared. For the other cases, n is a function of the
sizes of the samples or ““cells” involved; see Sections 8.3.2, 8.3.4. The power
tables provide for n =2 (1) 40 (2) 60 (4) 100 (20) 200 (50) 500 (100) 1000.
Here, too, linear interpolation is quite adequate.




356 8 F TESTS ON MEANS IN THE ANALYSIS OF VARIANCE AND COVARIANCE

The values in the body of the tables are power times 100, i.e., the percent
of tests carried out under the specified conditions which will result in rejec-
tion of the null hypothesis. They are rounded to the nearest unit and are
generally accurate to within one unit as tabled.

8.3.1 Case0: k MEans wiTH EQUAL n. The simplest case is the one-way
analysis of variance of k samples, eack with the same number of observations,
n (Case 0). The F test is based on u=k — 1 numerator df, and k(n — 1)
denominator df. The power tables were designed for Case 0 conditions,
and this section describes and illustrates their use under these conditions.
Later sections describe their application with unequal n’s (Case 1), in fac-
torial and other designs (Case 2), and for tests of interactions (Case 3).

In Case 0, the investigator posits an alternate hypothesis or ES in terms
of f, the standard deviation of standardized means, by one or more of the
following procedures:

1. By hypothesizing the k varying population means expressed in the
raw unit of measurement, finding the standard deviation of these means,
and dividing this by the estimated within-population standard deviation.
This is a literal application of formula (8.2.1). (See example 8.8 in Section
8.3.4) ;

2. By hypothesizing the range of the k means (d) and their pattern, and
using the formulas of Section 8.2.1. or the c; values of Table 8.2.1 to convert
dtof.

3. By hypothesizing the ES as a proportion of the total variance for
which population membership accounts (n%) or as a correlation ratio (3),
and using the formulas of Section 8.2.2 [particularly formula (8.2.22)] or
Table 8.2.2 to convert 5 or 4* to f.

4. With experience, or perhaps by using the proposed operational defi-
nitions of small, medium, and large f values as a framework, he can work
directly with f, i.e., simply directly specify his alternate hypothesis or ES
by selecting an appropriate value of f.

Since the specification of a value of f which correctly reflects the investi-
gator’s ES expectations is crucial, cross-checking among the above routes is
recommended. Thus, for example, having reached an f by specifying an
7%, it would be worthwhile to determine what range of means (d) for a given
anticipated pattern that value of f implies, and to ascertain whether this d
is consistent with expectation.

Once f is selected, the rest is simple in Case 0 applications. Find the
table for the a and u (=k — 1) of the problem and locate n, the common
sample size, and f. This determines their power ( x 100). For nontabulated
f or u, linear interpolation is reasonably accurate.
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Dlustrative Examples

8.1 An educational psychologist performs an experiment in which
k = 4 different teaching methods are to be contrasted. A total of N =80
pupils are randomly assigned to samples of n = 20 pupils per methods group
and are tested on an achievement criterion test following instruction. The
resulting data are tested by an overall F test of a one-way analysis of variance
design, using an a = .05 significance criterion.

In setting the ES which she expects in the population (i.e., the alternate hy-
pothesis), she believes that the 4 means should span a range d of three-
quarters of a within-population standard deviation. This judgment is based
on past experience and knowledge of the characteristics of the teaching
methods. On this basis, she further expects that the four means will be about
equally spaced along this range, thus in Pattern 2 (Section 8.2.1). From Table
8.2.1, she reads that for k = 4 in Paitern 2, f = .373d, so that, given an an-
ticipated d = .75, f = .373(.75) = .280. Having reached this value, she
cross-checks by noting [from formula (8.2.19)] that this implies an 7> = /(1
+ ) = .280%/(1 + .280%) = .0727, i.e., about 7;% of the measure’s total
variance is accounted for by group membership, or in correlation ratio terms,
n = +.0727 = .270. She observes further that f = .280 is just slightly above
the operational definition of a medium ES (f = .25). She accepts the results
of this cross-checking as consonant with her expectations. The necessary
specifications for determining the power of the F test are complete. Note
that in a one-way analysis of variance on k “levels,” the numerator df are
u=k—1=3. Thus,

a=.05, u=3, f—=.28, n=20.

InTable 8.3.14 fora = .05 and u = 3, at row n = 20, she finds power for
column f = .25 to be .43 and for f = .30 to be .59. Linear interpolation yields
(approximate) power of

(.28 —.25)
43+ m(.ﬂ A43) = .43+ .10=.53.

Thus, if the standard deviation of the 4 standardized population ieans,
f, is .28 of a within-population standard deviation, with n =20 cases per
sample, the F test has had only a .53 probability of rejecting the null hypoth-
esis at the .05 level. Note that the operative condition is the value of f
of .28, whether the range and pattern of population means was as predicted
or whether another range and pattern, which would yield the same f, applied.

An experiment whose power is as low as .53 for detecting its anticipated
ES is relatively inconclusive when it fails to reject the null hypothesis. Given
a population f =.28, rather than f= 0 as posited by the null hypothesis, it is
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a “toss-up” whether his results will be significant at the a and n conditions
which obtain. Note that even if the a criterion were liberalized to .10, linear
interpolation in Table 8.3.25 (for a=.10, u=3) between f=25 and .30
gives approximate power atn = 20 of only .56 + .09 = .65.

This problem has been presented as if the experiment were already
completed (or at least committed), with a post hoc determination of power
under the given conditions. See problem 8.9 below for a consideration of
this problem as one of experimental planning, where, under stated conditions,
the purpose is the determination of sample size to attain a specified power.

8.2 A large scale research on mental hospital treatment programs of
chronic schizophrenics is undertaken by a psychiatric research team. A
pool of N =600 suitable patients is randomly divided into 3 (=k) equal
samples, each assigned to a different building, and in each building a differ-
ent microsocial system of roles, functions, responsibilities, and rewards of
stafl and patients is instituted following training. After a suitable interval,
patients are assessed by the research team by means of behavior rating scales.
The social-scientific *“cost” of mistakenly rejecting the null hypothesis
leads the team to decide on a = .01. The team is split, however, on the ques-
tion of how large an effect the difference in the three systems will have,
some expecting that 5% of behavior rating variance will be accounted for
by system membership, the others expecting 10%. Hence »* = .05 or .10.
In their discussion, they agree in their expectation that the population
means are at equal intervals, hence in Pattern 2 (but note that for k=3,
Pattern 2 and Pattern 1 are the same). From Table 8.2.2, they note that at
7% = .05, f=.229, and at o> = .10, f=.333. They determine, using the con-
stants of Table 8.2.1, that the span of means for Pattern 2 for f=.229 is
d, = 2.45(.229) = .56, and for f=.333, d,=245(.333)=.82. Thus the
proponents of n? = .05 expect a spread of the three means of a little more
than half a within-population standard deviation, while the 7% = .10 faction
expect a spread of almost five-sixths of a o. This translation brings them no
closer to agreement. What is the power of the eventual F test under each
of these two alternative hypotheses?

23

=133 n = 200.

a=.0l, u=k-1=2, f

In Table 8.3.2 (for a = .01, u = 2) at row n = 200, they find that at f = .20,
power is .98, and at f = .25, power is greater than .995. This means they need
have no dispute—if the f=.23 (y* =.05) faction is right, power is about
99; if the f=.33 (? =.10) faction is right, power is greater than .995. If
either is correct, they are virtually certain to reject the null hypothesis at
a = .01 with the F test. '
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. In a circumstance like this, where there is ““power to spare” (and assum-
ing that the »*=.05 *“pessimists”’ are not substantially overestimating the
ES), there may be an opportunity to capitalize on these riches by enlarging
on the experimental issues. For example, assume that there was a fourth
microsocial system that had been a candidate for inclusion in the experi-
.ment and that adequate physical and staff resources are available for its
inclusion. It might then be worth exploring the statistical power consequences
of dividing the available 600 chronic patients into k =4 equal groups.
Assuming no change in the conditions, and for the same f values, interpola-
tion in Table 8.3.3 (for a = .01, k — 1 =u = 3) shows that at n = 140 (150
is not tabulated), power at f= .23 is about .97 and at f = .33, power again
exceeds .995. Thus, this experiment could be enlarged at no substantial loss
in power, assuming f is not materially lower than .23. But note that if f is
really .15, the original k = 3, n = 200 experiment has still creditable power of
.79 (Table 8.3.2), but the power of the revised k =4, n = 150 experiment is
only about .72 (interpolating between n = 140 and 160 in Table 8.3.3).

8.3.2 Case 1: k MeaNs wITH UNEQUAL n. When the sample sizes
(n;) drawn up from the k populations whose means (m;) are being compared
are not all the same, no fundamental conceptual change occurs, but further
atten.tion to the definition of f is required and procedures for power analysis
require accommodation from those of Case 0.

f was defined as the standard deviation of standardized means, o,,/c
[formula (8.2.1)], where o, was given for equal n in formula (8.2.2) as "

/\/EE- —-m);
_ [ & .
O’m = —-—-—-—k

When n’s are not equal, it is no longer true that the reference point from
which the “effects’ are calculated, m, is a simple mean of the k population
means, i.e.,m =st/k, but rather a weighted mean of these means, the weight
of each m; beipg Pi» the proportion of the total N =)'n; which its sample
n; comprises. Thus, for Case |

(8.3.1) m— L0

The m for equal n is a special case of this formula, where all the p; =
n/N =n/kn = 1/k.
Similarly, in computing the standard deviations of the means, o,,, the
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separate effects of the k populations, m; —m, must be weighted by their
proportionate sample sizes:

2lni(mi - m)l ii:lPi.("“i __m)z .

(8.3.2) m=n TN =

Here, too, the formula given for o,, for equal n in the previous section
(8.2.2) is a special case of formula (8.3.2), where all p; = 1/k.

Thus, with the understanding that for unequal n each population mean
“counts” to the extent of the relative proportion of its sample size, no
change in the definition of f is required; it is the standard deviation of the
(weighted) standardized means.

The implication of this weighting requires comment. If the populations
whose means are extreme, i.e., have large (m; —m)?, also have large n’s
relative to the others, f will be larger than with equal n; conversely, if ex-
treme populations have small n’s, f will be smaller, This suggests that in
circumstances where the researcher has reason to believe that certain of the
k populations will provide particularly discrepant means, dividing the
total N unequally with larger sample n’s drawn from these populations will
increase f (over equal n), and thereby increase power. :

This statistical fact, however, cannot necessarily be taken as a mandate
to so design experiments. Its utilization depends on whether the purpose
of the research is solely to (a) test with a view to reject the null hypothesis
of equal population means, or whether it (b) seeks to reflect a “natural”
population state of affairs. When there is no ““natural” population, as
when the populations are of different experimental manipulations of ran-
domly assigned subjects, as in a true experiment, we are perforce in situation
gjz). When a natural population exists, our purpose may be either (a) or

).

An illustration should clarify the distinction. In an experiment where
the effect on a dependent variable of three different experimental condi-
tions is under scrutiny, each condition is a systematic artificial creation
of the experimenter. The populations are hypothetical collections of results
of a given condition being applied to all subjects. Consider, by way of con-
trast, a survey research designed to inquire into differences among Protes-
tants, Catholics, and Jews in scores on a scale of attitude toward the United
Nations (AUN). Here there are also three populations, but population
membership is not an artificial creation of the manipulative efforts of the
investigator. These are natural populations, and their properties as popula-
tions include their relative sizes in their combined superpopulation. There
is now a choice with regard to how sampling is to proceed. The investigator

8.3 POWER TABLES 361

can draw a random sample of N cases of the total population and administer
the AUN scale to all N cases, then sort them into religious groups. The pro-
portions in each religious group will then not be equal, but reflect (within
sampling error) the relative sizes of the religious affiliation populations.
Alternatively, having decided to study a total of N cases, he can draw equal
samples from each religion.

Now, assume that the Jews yield a small p, and that their AUN population
mean is quite extreme. In the former sampling plan, the f, based on the
small weight given the Jews, would be smaller than the f obtained with
equal sample sizes, where the mean of the Jews would be weighted equally
with the others. The larger f would have associated with it a larger 5> (as
well as greater power). But if 7° is to be interpreted as giving the proportion
of AUN variance associated with religion in the general population, i.e.,
in the natural population, where there are relatively few Jews, it is the first
sampling plan and the smaller n* which is appropriate. The 5* from equal
sampling would have to be interpreted as the proportion of AUN variance
associated with (artificially) equiprobable religious group membership. The
equal-sampling n? is not objectionable if the investigator wishes to consider
membership in a given religious group as an abstract effect quite apart
from the relative frequency with which that effect (i.e., that religious group)
occurs in the population, but it clearly cannot be referred to the natural
population with its varying group frequencies.

On the other hand, assume that the purpose of the investigator is solely
to determine whether religious population means differ on AUN, ie., to
determine the status of the overall null hypothesis. Thus, no issue as to the
interpretation of 7? need arise. On this assumption, if his alternate hypoth-
esis gives him confidence that the population mean of the Jews will be
discrepant, he may advantageously oversample Jews by having their n
equal (or even draw a larger sample of Jews than of the other groups) in
order to make f larger (if his alternate hypothesis is valid), and thus increase
his power.

As has already been implied, the weighting of the population means
does not change the meaning of »* nor disturb its relationship to f. Thus,
formulas (8.2.16)-(8.2.22) and Table 8.2.2 all obtain for Case I. This is not
the case for the translation between f and d measures of range in the vari-
ous patterns detailed in Section 8.2.1 [formulas (8.2.5)~(8.2.15) and Table
8.2.1]. The assumption throughout that material is one of equal sample sizes,
and it is clear that any given d value for some pattern of k means will lead
to differing f's depending upon how the varying p; are assigned to the m;.
The proposed conventions in regard to small, medium, and large f values
continue to be applicable for Case 1 (except, of course, for their explication
in terms of d values).
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Finally, in Case 1, where there is no commonn value to use in the power
tables, one enters with their arithmetic mean:

o

n;

i=1

]

=~ Z

(8.3.3) n=

-]

Aside from the use of the mean sample size, the procedure for the use
of Table 8.3 is identical with that of Case 0.

IHustrative Examples

8.3 A university political science class has. (.ie's'igned a ppll to mqulrle
into student opinion about the relative responsibilities apd rlghts. of lqcaé
state, and federal governments. An index score on cenFr:a.llsrr? hH is derive
and its relationship to various respondent characterlst{c§ 1s stu‘dled.. One‘
such characteristic is academic area, i.e., science, .humamtles, social science,
etc., of which there are k = 6 in all. Data are available on a random §ample
of 300 respondents drawn from the universi.ty student' roster. In cons11c'ler1?g
the ES that they anticipate, they note that since tht?y intend t? generalize 'ﬁ
the natural population of the college and are‘samplmg accordmgly, they wi t
have unequal sample size$ and their conception of f must take into accourcl1
the differential weighting of effects in the o,, of formula (8.3.2). So compfl;tet,
they posit f at .15. They note ruefully that they expect the greatest effects
[departures from the grand weighted mean of fo.rmula (8.3.1)] tol E{O?e
from the smallest academic area samples, and that if they had sample t e
academic areas equally, they could anticipate an f of .20. Ho‘\:vever, simplmg
academic areas equally would result in inequah.txes on the bl"CEl.kS of t}%e
data which are to be studied, e.g., sex, po.litlcal party affiliation, fathnlic
background. In any case, their interest lies in the correlates of CI in the

“natural” university population. - . .
What is the power at a = .05 under the conditions which obtain, namely

a=05, u=k—-1=5 f=.15  n=N/k=>50.

Note that n is entered at the average sample size, 300/§ = 50. Table
8.3.16 (for a = .05, u=35) for row n=>50, column f=’,15,'1n(¥1cates that
power = .48. Clearly, the a priori probability of the :.te;t s rejecting the null

is given under these conditions is not very high. _
hypzts};isrlnegthat it is undesirable to increase a to .10 (whif:h would increase
power to .61—see Table 8.3.27) or to draw a larger sar.nplfa; is there somer’other
possible strategem to improve the prognosis for this 51g_r11ﬁcance test? The
following might be acceptable: The division of the cases into as many as six
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academic areas miight be reconsidered, given the partially arbitrary nature
of such a partitioning. The class might discover that a somewhat less fine
discrimination into three more broadly defined academic areas such as
science, humanities-arts, and engineering might be acceptable. Assume
that under these conditions f [still based on the a,, of formula 8.3.1)] is
again computed to be about .15. The revised plan has the conditions

a =05, u=3-1=2, f=_15, n = 300/3 = 100.

In Table 8.3.13 for a = .05 and u = 2,n =100, and f=15, power = .64,
a distinct improvement over the .48 value of the previous plan. If this pro-
cess can, without doing violence to the issue, be carried a step further to a
partitioning into two areas, and if the same f can be assumed, Table 8.3.12
(for a = .05, u=1) gives power at n = 300/2 =150 for f= .15 of about .74
(by linear interpolation). It must again be stressed that all this reasoning
takes place without recourse to the data which are to be analyzed, i.e., we
are in the area of planning the data analysis.

Thus, when there is some freedom available in the partitioning of a
sample into groups, power considerations may advantageously enter into the
decision. With f (and total N) constant, fewer groups and hence smaller
u with larger n will result in increased power. Although f will not in general
remain constant over changes in partitioning, this too may become a useful
lever in planning analyses, since some partitions of the total sample will lead
to larger anticipated f values, and hence greater power, than others. There-
fore, when alternative partitions are possible, the investigator should seek
the one whose combined effect on u and expected f is such as to maximize
power. See problems 8.13 and 8.14 for further discussion.

8.4 As part of an inquiry into the differential effectiveness of psychiatric
hospitals in a national system, an analysis is to be performed on the issue
as to whether the psychiatric nurses in the various hospitals differ from
hospital to hospital with regard to scores on an attitude scale of Social
Restrictiveness (Cohen & Struening, 1963; 1964). There are k = 12 psychiatric
hospitals of wide geographic distribution which have supplied quasi-random
samples of their nursing personnel of varying sizes, depending upon adminis-
trative considerations and the size of their nursing staffs. The total N = 326,
so that the average n per hospital is 326/12 = 27.2. The investigators antici-
pate that the ES of hospital on attitude is of medium size, i.e., that f = .25,
They note that the f in question includes the differential weighting of the
0 Of formula (8.2.3), but since they have no reason to expect any relation-
ship between the size of a hospital mean’s discrepancy from the grand mean
(i.e., the hospital’s “effect”) and the size of its sample, there is no need to
modify the conception of a medium ES being operationalized by f=25.
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What is the power of the F test on means at a=.057 The conditions of the
test, in summary, are

a=.05, wu=k—1=11, f=.25  n=27.

There are no tables for u= 11, so that interpolation between Tables
8.3.19 (for a=.05, u=10) and 8.3.20 (for a=.05, u=12) is necessary.
Table 8.3.19 for row n =27 and column f= 25 yields power of .85. Table
8.3.20 for the same n and f gives power of .89. Linear interpolation between
these values yields a power estimate of .87. Thus, given that the (weighted)
standard deviation of the standardized means of the populations of nurses
in these 12 hospitals is .25, the probability that F will meet the a = .05 cri-
terion is .87, a value that would probably be deemed quite satisfactory.

8.3.3 Case 2: FiIxeD MAIN EFFecCTs IN FACTORIAL AND COMPLEX DESIGNS.
In any experimental design of whatever structural complexity, a ‘“fixed main
effect” can be subjected to approximate power analysis with the aid of
the tables of this chapter. In factorial, randomized blocks, split-plot, Latin
square (etc.) designs, the F test on a fixed main effect involving k levels is
a test of the equality of the k population means, whatever other fixed or
random main or interaction effects may be included in the design (Winer,
1971; Hays, 1973; Edwards, 1972). We will illustrate the principles involved
in this extension by examining power analysis of a main effect in a fixed
factorial design. Except for a minor complication due to denominator df, and
some qualification in the interpretation of ?, this test proceeds as in Cases 0
and 1 above.

Consider, for example, an | x J factorial design, where there are i =3
levels of 1, j =4 levels of J, and each of the ij = 12 cells contains n,= 10
observations. The structure of the analysis in the usual model which includes
interaction is:

Effect df

} uj =f—1=2

3 uy=j—1=3
1x3 U ={-DG~1)=6
Within cell (error) ij(n. — 1) = 12(9) = 108
Total ijn. —1=119
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Now, consider the null hypothesis for the J effect, i.e., that the 4 popu-
lation means of J, through J, are equal. The 4 sample means for J are each
computed on n; =in,=3(10) = 30 observations. (Similarly, each of the 3
means for I is computed on n; =jn_ = 4(10) = 40 observations.) The minor
complication arises at the point where one wants to determine the power
of the test on J by applying the appropriate u, =3 table at n=n; = 30.
This procedure is equivalent to ignoring the fact that the 1 main effect and
I x 1 interaction exist in the design, i.e., a Case 0 test of 4 means, each
of n = 30. But the latter test has for its F-ratio denominator (within cell, or
error) df, 4(30 — 1) = 116. More generally, the denominator df presumed
in the calculation of the table entries is, for k means each of n cases, k(n — 1)
= (u + 1)(n — 1). Thus, in this case, the table’s value is based on 3 and 116
df, while the F test to be performed is for 3 and 108df.

To cope with this problem of the discrepancy in denominator (error) df
between the presumption of a single source of nonerror variance of one-way
design on which the tables are based and the varying numbers of sources of
nonerror variance (main eflects, interactions) of factorial and other complex
designs, for all tests of effects in the latter, we adjust the n used for table
entry to

_ denominator df

834 ’
(8.3.4) n a1

The denominator df for a factorial design is the total N minus the total
number of cells, and u is the df of the effect in question, as exemplified above
for the | x J factorial design. Concretely, the J effect is tested as if it were
based on samples of size
, 108
n = 311 +1 =28,

which together with the f value posited for the J effect, is used for entry
into the appropriate table (for a and u) to determine power.

What happens to the interpretation of f when the basis of classification
K into k levels is present together with others, as it is in factorial design?
However complicated the factorial design, i.e., no matter how many other
factors (I, J, etc.) and interactions (K x I, K x J, Kx I x J, etc.) may be
involved, the definition of f for the k means of K remains the same—the
standard deviation of the k standardized means, where the standardization
is by the common within (cell) population standard deviation [formulas
(8.2.1) and (8.2.2)]. Thus, there is no need to adjust one’s conception of f
for a set of k means when one moves from the one-way analysis of variance
(Cases 0 and 1) to the case where additional bases of partitioning of the
data exist. Furthermore, the translation between f and the d measures con-
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sidered in 7.2.1 is also not affected. It is, however, necessary to consider the
interpretation of »* in Case 2.

In Section 8.2.2, n* was defined as the proportion of the total variance
made up by the variance of the means [formula 8.2.18)]. The total variance,
in turn, was simply the sum of the within-population variance and the
variance of the means [formula (8.2.17)]. The framework of that exposition
was the analysis of variance into two components, between-populations
and within-populations. In factorial design, the total variance is made up
not only of the within (cell) population variance and the variance of the
means of the levels of the factor under study, but also the variances of the
means of the other factor(s) and also of the interactions. Therefore, the
variance base of 5 of formula (8.2.18), namely o? + o,,%, is no longer the
total variance, and the formulas involving # and %% [(8.2.19), (8.2.20),
(8.2.22)] and Table 8.2.2 require the reinterpretation of n as a partial corre-
lation ratio, and 7% as a proportion, not of the total variance, but of the
total from which there has been excluded (partialled out) the variance due
to the other factor(s) and interactions.

This can be made concrete by reference to the I x J (3 x 4) factorial
illustration. Consider the four population means of the levels of J and
assume their f, is .30. Assume further that f; is .50 and f,,, is .20. When »?
for J is computed from formula (8.2.19) (or looked up in Table 8.2.2):

, | f .302
T+ 1+.30°

the results for J clearly are not in the slightest affected by the size of the
{ or 1 x J effects. The »* for J in this design might be written in the con-
ventional notation of partial correlation, with Y as the dependent variable
under study, as 7°yy.1u.y, i.€., the proportion of the Y variance associated
with J population membership, when variance due to I and to I'x ) is
excluded from consideration. Thus, given fy = .30, the variance of the J
means accounts for .0826 of the quantity made up of itself plus the within-
cell population variance.

In higher order factorial designs, the n* computed from an f for a given
source J might be represented as n%yy.ay omer» the ““all other” meaning all
the other sources of total variance, main effects, and interactions. Each
source’s “‘size” may be assessed by such a partial PV. Because of their
construction, however, they do not cumulate to a meaningful total.

The proposed operational definitions of small, medium, and large ES
in terms of f have their usual meaning. When assessing power in testing
the effects of the above | x J factorial, f; and f, (and also f,, ,—see Section
8.3.4) can each be set quite independently of the others (because of their
partial nature), by using the operational definitions or by whatever other

U] = 0826,
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means suit the investigator. They can, for example, be set by stating the
alternative-hypothetical cell means and o, and computing the resulting f
values for all effects (illustrated in example 8.9 of the next section).

The scope of the present treatment precludes a detailed discussion of
the power analysis of fixed effects in complex designs other than the fac-
torial. Such analyses can be accomplished using the tables of this chapter if
the following principles are kept in mind:

1. The basic ES index, f, represents the standard deviation of standardized
means, the standardization being accomplished by division by the appro-
priate . We have seen that for fixed factorial designs, o is the square root
of the within cell population variance. In other designs, and more generally,
o is the square root of the variance being estimated by the denominator
(“error”) mean square of the F test which is to be performed. For example,
in repeated measurements designs using multiple groups of subjects (*“split
plot” designs), there are at least two error terms, (a) a2 ““subjects within
groups” or between-subjects error, and (b) an interaction term involving
subjects, or within-subject error. In the definition of f for any source (i.e.,
set of means), the standardization or scaling of the o, will come from either
(a) or (b), depending on whether the source is a between or a within source,
just as will their F ratio denominators (Winer, 1971).

2. The adjustment to n’ of formula (8.3.4) calls for the denominator df,
i.e., the df for the actual error term of the F ratio that is appropriate for the
test of that source of variance in that design. For example, consider the test
of the treatment effect in an unreplicated 6 x 6 Latin square (Edwards, 1972,
pp- 285-317). Six treatment means, each based on n = 6 observations, are to
be compared, so u = 5. Since the Latin square residual (error) mean square,
which is the denominator of the F ratio, is based on (n — 1)(n — 2) = 20 df,
the n' for table entry is, from (8.3.4), 20/(6 + 1) + 1 = 3.86. Power would then
be found by linear interpolation between n =3 and 4 at the f value posited
in the power table for u = 5 for the specified a level.

Ilustrative Examples

8.5 An experimental psychologist has designed an experiment to
investigate the effect of genetic strain (1) at i=3 levels and conditions
of irradiation (J) at j=4 levels on maze learning in rats. He draws 24
animals randomly from a supply of each genetic strain and apportions each
strain sample randomly and equally to the four conditions, so that his
3 % 4 = 12 cells each contain a maze score for each of n, = 6 animals for a
total N of 12(6) = 72 animals. The denominator df for the F tests in this
analysis is therefore 72 — 12 = 60. He expects a medium ES for I and a large
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ES for J, and following the operational definitions of Section 8.2.3, sets
f, = .25 and f, = .40. Note that these values are standardized by the within
cell population and each of the main effects is independent of the other. (The
question of the ! x J interaction is considered in the next section under Case
3.) What is the power of these two main effect F tests at the a = .05 criterion?

For the test on the equality of the mean maze scores for the 3 strains
(), u=i=2, and each mean is taken over 24 animals. However, for table
entry, we require the n’ of formula (8.3.4): 60/(2 + 1) -+ 1 = 21. Thus, the
specifications are:

a=.05, u=2, f=.25 n =21. -

Table 8.3.13 (a = .05, u = 2) at row n = 21 and column f = .25 indicates
power of .40. The chances of detecting a medium effect in strain differences
for these specifications are only two in five,

For a test of equality of means of the four irradiation conditions (J),
u=j—1=3, and each mean is taken over 18 animals. Again it is n’ of
formula (8.3.4) that is required, and it is 60/(3 + 1) + 1 = 16. The specification
summary for the test on J is thus:

a = .05, u=3 f=.40,. n' =16.

In Table 8.3.14 (a =05, u = 3), at row n = 16 and column f = 40, he
finds power = .75. The power of the test on irradiation conditions (J), given
the large effect anticipated, is distinctly better than that for genetic strains (1);
a probability of .75 of rejecting the null hypothesis means .75/.25, or three to
one odds for rejection under these specifications.

8.6 An experiment in developmental social psychology is designed to
study the effect of sex of experimenter (S at s =2 levels), age of subject
(A at a = 3 levels), instruction conditions (C, at ¢ = 4), and their interactions
(which are considered in the next section) on the persuasibility of elementary
school boys. A total N of 120 subjects is assigned randomly (within age
groups and equally) to the 2 x 3 x 4 =24 cells of the design; thus, there are
5 cases in each cell. Expectations from theory and previous research lead
the experimenter to posit, for each effect, the following ES for the three
effects: fs = .10, f4 = .25, and fc = .40. (Note that these f values imply partial
2, respectively, of .01, .06, and .14.) Using as a significance criterion a = .05,
what is the power of each of the main effects F tests?

This is a 2 x 3 x 4 fixed factorial design, and although we will not here
consider the power testing of the four interaction effects (S x A, § x C,
A x C and S x A x C), they are part of the model (see Illustrative Example
8.7 in Section 8.3.4). The correct df for the denominator (within cell mean
square) of all the F tests is 120 — 24 = 96,
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For the test of the S effect, u =2 — 1 =1, and although each mean is
based on 60 cases, the n’ for table entry is 96/(1 + 1) + 1 = 49. Thus, the
specifications are

a =05, u=1, f=.10, n' =49,

In Table 8.3.12 for a = .05 and u = I, at column f = .10, for both rows
n = 48 and 50, power is given as .16. The probability of detecting f =10 (a
conventionally small effect) is very poor.

For the three age groups (hence u = 2), the n’ obtained by formula (8.3.4)
is 96/(2 + 1) + 1 = 33. The specifications for the determination of the power
of the F test on the A main effect are thus:

a =05, u=2, f=.25, n’ =33

In Table 8.3.13 (a=.05, u=2), at row n=33 and column f= .25,
power = .59. Note that f = .25 is our conventional definition of a medium
effect.

Finally, the test of the means of the four instruction conditions (hence
u = 3) has for its n’ 96/(3 + 1) + 1 = 25. The specification summary:

a = .05, u=3, f = .40, n’ =25,

Table 8.3.14 at row n = 25, column f = .40 yields power of .93. Under
these conditions, the b (Type 11) error (1 — power) is about the same as the
a (Type 1) error, but note that a large effect has been posited.

In summary, the experimenter has a very poor (.16) expectation of detect-
ing the small S effect, a no better than fair (.59) chance of detecting the
medium A effect, and an excellent (.93) chance of finding a significant C effect,
assuming the validity of his alternate hypotheses (i.., his f values), a = .05,
and N =120. As an exercise, the reader may determine that changing the
specifications to 6 cases per cell (N = 144), and leaving the other specifications
unchanged, the tabled power values become .19 for S, .70 for A, and .97 for C.
Note the inconsequential improvement this 20 % increase in the size of the
experiment has for the S and C effects, although bringing A from power of
.59 to .70 might be worthwhile. Reaching significant power for S seems hope-
less, but we have repeatedly seen that very large samples are required to obtain
good power to detect small effects.

8.3.4 Cask 3: TesTS OF INTERACTIONS. A detailed exposition of inter-
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action effects in experimental design is beyond the scope of this handbook;
the reader is referred to one of the standard treatments (e.g., Hays, 1981;
Winer, 1971; Edwards, 1972). We assume throughout equal n_ in the cells of
the factorial.

For our present purposes, we note that an R x C interaction can be
understood in the following ways:

1. Differences in effects between two levels of R, say R; and R, (i, k =
1,2,3,..., r; i< k) with regard to differences in pairs of C, say C;— C,
(G, p=1,2,3,...,¢c; j < p). More simply, a contribution to an R x Cinter-
action would be a difference between two levels of R with regard to a
difference between two levels of C. Thus, if in the population, the sex differ-
ence (males minus females) in conditioning to sound (C;) is algebraically
larger than the sex difference in conditioning to electric shock (C,), a sex
by conditioning stimulus (R x C) interaction would be said to exist. A first-
order interaction (R x C) is equivalent to differences between differences;
a second-order interaction (R x € x H) equivalent to differences between
differences of differences; etc. (see example 8.8 below).

2. Equivalently, a first-order interaction (R x C)} can be thought of
as a residual effect after the separate main effects of R and C have
been taken out or allowed for. Thus, after any systematic (averaged over
stimulus) sex difference in- conditioning is allowed for, and any systematic
(averaged over sex) difference in conditioning stimulus is also allowed
for, if there remains any variation in the sex-stimulus cells, a sex by con-
ditioning stimulus (R x C) interaction would be said to exist. A second-
order interaction (R x € x H) would be said to exist if there was residual
variation after the R, C,H, R x C, R x H, and C x H effects were removed,
etc. '

3. A third equivalent conception of an R x C interaction implied by
either of the above is simply that the effect of R varies from one level of
C to another (and conversely). Thus, a nonzero sex by conditioning
stimulus interaction means (and is meant by): The effect of a given stimulus
(relative to others) varies between sexes or depends upon which sex is
under consideration. This, in turn, means that there is a joinr effect of
sex and stimulus over and above any separate (main) effect of the two
variables. Equivalently, the effect of each is conditional on the other.

To index the size of an interaction, we use f defined in a way which is a
generalization of the basic definition set forth in equations (8.2.1) and
(8.2.2). First we return to the second conception of an R x C interaction
above, where we spoke of a “residual effect™ after the main effects of R
and C have been taken out. Consider the cell defined by the ith level of R
and the jth level of C, the ijth cell of the table, which contains in all rc
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cells. That cell’s population mean is my;. Its value depends on (2) the main
effect of R;, i.e., m;. —m, the departure of the population mean of level
i of R, (b) the main effect of C;, i.e., m; — m, the departure of the popu-
lation mean of level j of C, (c) the value of m, and (d) the interaction effect
for that cell, x;, the quantity in which we are particularly interested.
Simple algebra leads to the following definition of x; in terms of the
cell mean (my;), the main effect means m;., my;), and the total population
mean (m):

(83.5) x;i = mii - m;, - mi + m.

When a cell has x; =0, it has no interaction effect, i.e., its mean is
accounted for by the R; and C; main effects and the total population mean.
When all the rc cells have x values of zero, the R x C interaction is zero.
Thus, the degree of variability of the x values about their (necessarily) zero
mean is indicative of the size of the R x C interaction.

Thus, as a measure of the size of the interaction of the R x C factorial
design, we use the standard deviation of the x;; values in the rc cells. As an
exact analogy to our (raw) measure of the size of a main effect, o,,, of formula
(8.2.2), we find

(8.3.6) oy = \/Z—x%
rc

the square root of the mean of the squared interaction effect values for the
rc cells.
To obtain a standardized ES measure of interaction, we proceed as

before to divide by o, the within-cell population standard deviation, to obtain
f:

(8.3.7) f= 2

The f for an interaction of formula (8.3.7) can be interpreted in the same
way as throughout this chapter, as a measure of variability and hence size of
(interaction) effects, whose mean is zero, standardized by the common within
(cell) population standard deviation. Because it is the same measure, it can
be understood:

1. in the framework which relates it to » and the proportion of variance
of Section 8.2.2, as modified in terms of partial  for Case 2 in Section 8.3.3;
or

2. By using the operational definitions of small, medium, and large f
values of Section 8.2.3 (even though the discussion in these sections was
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particularized in terms of the variability of means, rather than of interaction
effects); or

3. By writing the alternate-hypothetical cell means and computing th‘e
x values and o, and f by formulas (8.3.5)~(8.3.7). (This latter procedure is
illustrated in example 8.9 below.)

For the sake of simplicity of exposition, the above discussion has been of
f for a two-way (first-order) interaction. The generalization of f for higher-
order interactions is fairly straightforward. For example, given a three-way
interaction, R x C x H, with R at r levels, C at ¢ levels, and H at h levels,
there are now rch cells. Consider the cell defined by the ith level of R, the
jth level of C, and the kth level of H. Its interaction effect is

Xjji = My —My — My —my, — Xy — X; — X + 2m,

where the x;;, X;,, and x;, are the two-way interaction effects as defined i'n
formula (8.3.4). Analogous to formula (8.3.6), the raw variability measure is

_ [ %

(8.3.8) o, —

i.e., the square root of the mean of the squared interaction effect values for
the rch cells. It is then standardized by formula (8.3.7) to give f, the ES for a
three-way interaction.

The number of degrees of freedom (u) for an interaction is the produc't of
the dfs of its constituent factors: (r — 1)(c — 1) for a two-way interaction,
(r — 1)(c — 1)(h — 1) for a three-way interaction, etc. .

For the reasons discussed in the preceding section on main effects, the test
on interactions in factorial designs require that n’ be used for table entry.
Formula (8.3.4) is again used with the same denominator df as for the main
effects and with u the appropriate df for the interaction.

In summary, power determination for interaction tests proceeds as follows:
u is the df for the interaction and, together with the significance criterion a,
determines the relevant power table. The table is then entered with f, WhiCl'.l is
determined by using one or more of the methods detailed above or by using
the ES conventions, and n’, a function of the denominator df and u (8.3.4).
The power value is then read from the table. Linear in‘terpolation for f, n,
and u (between tables) is used where necessary and provides a good approxi-

mation.

Illustrative Examples

8.7 Reconsider the experiment described in example 8.6, an inquiry
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in developmental social psychology in which the factors were sex of experi-
menter (S at s = 2 Jevels), age of subject (A at a=3 levels), and instruction
conditions (C at ¢=4 levels), i.e., a 2 x 3 x 4 factorial design, and the
dependent variable a measure of persuasibility. There are n=5 subjects
in each of the 24 cells of the design, a total N of 120, and the denominator
df is 120 — 24 = 96. For convenience, we restate the specifications and result-
ing tabled power value for each of the main effect F tests:

S: a=.05 u=1, f=.10, n’'=.49; power=.16
A: a=.05 u=2 f=.25 n'=.33; power=.59
C: a=.05 u=3, f=.40, n" =.25; power=.93

Consider first the interaction of sex of experimenter by age of subject
(S x A), which is posited to be of medium size, ie., f = .25, and the same
significance criterion, a = .05, is to be used. Note that this interaction con-
cerns the residuals in the 2 x 3 table which results when the 4 levels of C are
collapsed. The df for this interaction is therefore u = (2 — DG -1 =2 Al
the effects in this fixed factorial design, including the § x A effect, use as their
error term the within-cell mean square, hence the denominator df, as noted
above, is 120 — 24 = 96. This latter value and u are used in formula (8.3.4)
to determine n’ for table entry: n’ = 96/(2 + 1) + | = 33. The specifications
for the power of the S x A effect are thus:

a = .05, u=2, f=.25, n’ = 33.

InTable 8.3.13 fora = .05 and u = 2, with row n = 33 and column f = .25,
the power of the test is found as .59, a rather unimpressive value. Note that
this is exactly the same value as was found for the A main effect, which is
necessarily the case, since the specifications are the same. For A, we also used
a=.05 and f= .25, and its u is also 2. Since $ x A and A (as well as the
other effects) also share the same denominator df, their n’ values are also
necessarily the same.

Let us also specify a = .05 and f = .25 for the S x C interaction. It is based
on the 2 x 4 table which results when the three levels of A are collapsed, and
its u is therefore (2 — 1)(4 — 1) = 3. With the same denominator df of 96, the
n’ for this effect is 96/(3 + 1) + 1 = 25. Thus,

=05, u=73 f =25 n’' =25,

and Table 8.3.14 (for a = .05, u = 3) gives at row n = 33 and column f = .25
the power value .53. For the specifications for a and f the power is even
poorer than for the S x A interaction. This is because the increase in u results
in a decrease in n’.

The A x C interaction is defined by the 3 x 4 table that results when the
sex of experimenters is ignored, and its u is therefore B3—-1@—-1)=6. For
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this u and denominator df = 96, the n’ here is 96/(6 + 1) + 1 = 14.7. For the
sake of comparability, we again posit a = .05 and f = .25. The specifications
for the test of the A x C interaction, then, are:

a = .05, u =6, f=.25, n’ = 14.7.

In Table 8.3.17 (a = .05, u = 6), column f = .25 gives power values of .39
at n=14 and .42 at n=15; linear interpolation gives power of .41 for
n’ = 14.7. Note that, although the specifications remain a = .05 and f = .25,
since U is now 0, the resulting drop in n’ has produced a reduction in power
relative to the other two two-way interactions.

Finally, the three-way S x A x C interaction has u=Q2 - 1)3-1)
(4 — 1) = 6, the same as for the A x C interaction, and thus the same n’ =
96/(6 + 1) + 1 = 14.7. If we posit, as before, a = .05, and f = .25, the speci-
fications are exactly the same as for the A x C interaction,

a=05 u=6 f=.25  n =147,

and necessarily the same power of .41 is found (Table 8.3.17).

Because the df for interactions are products of the dfs of their constituent
main effect factors (e.g.. for A x C, u =2 x 3 = 6), the interactions in a fac-
torial design will generally have larger u values than do the main effects, and,
given the structure of the formula for n’ (8.3.4), their n’ values will generally
be smaller than those for the main effects. This in turn means that, for any
given size of effect (f) and significance criterion (a), the power of the inter-
action tests in a factorial design will, on the average, be smaller than that of
main effects (excepting 2% designs, where they will be the same). This principle
is even more clearly illustrated in the next example.

8.8 Consideran A x B x C fixed factorial design, 3 x 4 x 5 (= 60 cells),
with three observations in each cell, so that N = 60 x 3 = 180. The within-
cell error term for the denominator of the F tests will thus have 180 — 60 =
120 df. To help the reader get a feel for the power of main effect and inter-
action tests in factorial design as a function of f, a, u, and the n’ of formula
(8.3.4), tabled power values for the F tests in this experiment are given in
Table 8.3.34 for the conventional f values for small, medium, and large ES at
a =01, .03, and .10. Note that although this is a rather large experiment, for
many combinations of the parameters, the power values are low. Study of the

table shows that

1. Unless a large ES of f = .40 is posited, power is generally poor. Even at
f = .40, when a = .0l governs the test, two of the two-way interactions have
power less than .80, and for the triple interaction it is only .49. It seems clear
that unless unusually large experiments are undertaken, tests of small effects
have abysmally low power, and those for medium interaction effects for u > 4

8.3 POWER TABLES 375

have poor power even at a = .10.

2. For a medium ES of f = .25, only the main effect tests at a = .10 have
power values that give better than two to one odds for rejecting the null
hypothesis. At a = .05, power ranges from poor to hopeless, and at .01, not
even the tests of main effects have power as large as .50.

TABLE 8.3.34

POWER As A FUNCTION OF f, a, u, AND n"IN A 3 X 4 X 5 DESIGN
WITH N = 3 AND DENOMINATOR df = 120

f=.10 f= 25 f— 40
Effect u n a=01 05 .10 01 .05 .10 01 05 .10
A 2 41 05 15 25 45 70 80 93 98 99
B 3 31 04 13 22 38 63 75 90 97 99
C 4 25 03 12 21 33 58 70 8 96 98
AxB 6 18.1 03 10 18 26 51 64 80 93 97
AxC 8 143 02 09 17 23 46 59 75 91 95
BxC 12 10.2 02 08 16 18 39 52 66 8 92
AxBxC 24 58 02 08 14 10 29 42 49 74 83

3. For ESsno larger than what is conventionally defined as small (f = .10),
there is little point in carrying out the experiment: even at the most lenjent
a = 10 criterion, the largest power value is .25,

4. At the popular a = .05 level, only at f = .40 are the power values high

(excepting even here the .74 value for the A x B x C effect).
' 5. The table clearly exemplifies the principle of lower power values for
interactions, progressively so as the order of the interaction increases (or,
more exactly, as u increases). For example, only for f = .40 at a = .10 does
the power value for A x B x C exceed .80.

The preparation and study of such tables in experimental planning and
post hoc power analysis is strongly recommended. The reader js invited, as an
exercise, to compute such a table for a 3 x 4 design with 15 observations per
cell, and hence the same N = 180 as above. Comparison of this table with
Table 8.3.34 should help clarify the implications of few cells (hence smaller u,
larger denominator df, and larger n’ values) to power.

Because of the relative infirmity of tests of interactions due to their often
large u, the research planner should entertain the possibility of setting, a
priori, larger a values for the interaction tests than for the tests of main ef-
fects, usually .10 rather than .05. The price paid in credibility when the null
hypothesis for an interaction is rejected may well be worth the increase in
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power thus attained. This decision must, of course, be made on the basis not b fo=4.183/8 = 523
only of the design and ES parameters which obtain, but also with the substan- e

tive issues of the research kept in mind. For the R x C interaction ES, he finds the interaction effects for each cell

using formula (8.3.4)
8.9 A psychologist designs an experiment in which he will study the

effects of age (R) at r = 2 levels, nature of contingency of reinforcement (C) i Xi=m;—m; —m,;+m.
at ¢ = 4 levels, and their interaction (R x C) on a dependent learning variable. Thus,
There are to be 12 subjects in each of the r¢ = 8 cells, and a = .05 throughout.

We will use this example to illustrate the direct specification of the X, =41-33-37+30=+1
alternate hypothesis and hence the ES. Assume that the area has been well f

: . . X, =34-33- =
studied and the psychologist has a **strong” theory, so that he can estimate 12 3-29430=+2

the within-cell population standard deviation ¢ =8, and further, he can
state as an alternative to the overall null hypothesis specific hypothetical values

for each of the eight cell's population means, the my;. The latter then imply & X4 =29-27—-284+30=+4
the R means (m,.), the C means (m;;), and the grand mean m. They are as
follows: These x;; values for the 2 x 4 table of means are
C; C, C; C, m;. i C, C, Cy C,
R, 41 34 30 27 33 R, +1 +2 +1 -4
R, 33 24 2 29 27 R, —1 -2 —1 +4
m,; 37 29 26 28 30=m

Note that they are so defined that they must sum to zero in every row

anq colur.nn; these constraints are what result in the df for the R x C inter-
These values, in raw form, comprise his ES for the effects of R, C, and action being u = (r — 1)(c — 1); in this case, u = 3

R x C. Their conversion to f values for the main effects is quite straight- Applying formula (8.3.6) to these values,

forward. Applying formula (8.2.2) for R and C, i
o — \/Z"a’iz CHD? + (422 + (£ 1) + -+ (142
X rc
44

—3 TV B 2(4

. =\/(33 300 +@Q7-30° o 3, “)

™R 2
’ =J3= 2.345.
and '
Standardizing to find f [formula (8.3.7)},
(37— 30)> + (29 — 30> + (26 — 30)* + (28 — 30)* _ /755 4183
O = 7 = S5=4.183. faxe = 0, /o = 2.345/8 = 293!

Thus, his alternative-hypothetical cell population means, togeth i
When these are each standardized by dividing by the within-population el s or th

an estimate of o, have provided an f for the R x C effect (as well as
o =8 [formula (8.2.1)], he finds main effects). ( as for the
£ = 3/8 = 375 One of the ways in which to understand interactions, described in the

; introduction to this section, was as differences among differences. This is

and readily illustrated for this problem. Return to the cell means and consider
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such quantities as m,; —m,;, ie., the difference (with sign) between the
means of A and A, for each level of C. They are, respectively, (41 —33=)
+8,(34 —24=) +10, +8, and —2. Were these four values (+8, +10, +8,
and —2) all equ_gl, there would be zero interaction. Calling these values D
and their mean D (here + 6) for simplicity, o, can be found for a 2 x ¢ table

by
/z<0i—5>2
Oy = LI
x 4c
:\/(+8—6)2+(+10—6)2:|-(+8~—6)2+(—2—6)2
4(4)
= f;78“—2345
VAT
as before.

Since there are 8 (= rc) cells with 12 subjects in each for a total N = 96,
the denominator df for the F tests of the main effects and the interaction is
96 — 8 = 88. For the interaction test, u = (2 — 1)(4 — 1) = 3; therefore, the
n’ for table entry from formula (8.3.4) is 88/(3 + 1) + 1 = 23. The specifica-
tions for the test on the R x C interaction are thus:

a = .05, u =73, f=.293, n' =23,

In Table 8.3.14 (for a = .05, u=3) at row n’ =23, we find power at
f.= .25 to be .49 and at f = .30 to be .66. Linear interpolation for f = 293
gives the approximate power value of .64. The power for the main effects:

R: a=05 u=3 f=.375 n =45 power=.9%4;
C: a=.05 u=3, f=.523, n’ =23 power=.99.

Power under these specifications for R and C is very good, but is only .64
for the interaction, despite the fact that its f of .293 is larger than a conven-
tionally defined medium effect and that the experiment is fairly large. Since
the interaction is likely to be the central issue in this experiment, the power of
.64 is hardly adequate. To increase it, the experimenter should weigh the
alternatives of increasing the size of the experiment or using the more modest
a = .10 for the interaction test. If, for example, he increases the cell size from
12 to 17, the total N becomes 136, the denominator df = 136 — 8 = 128, and
n’ for R x Cis 128/(3 + 1) + | = 33. The specifications then are

a=.05, u=23, f=.293, n’ = 33,
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and power is found (by interpolation) to be .81. The size of the experiment
must be increased by 42 %, to raise the power of the interaction test from .64
to .81. On the other hand, increasing the a to .10 for the experiment as
originally planned, i.e., for

a =10, u=3, f=.293, n' =23,

power is found to be .75.

8.3.5 THE ANALYSIS OF COVARIANCE. With a simple conceptual adjust-
ment of frame of reference, all the previous material in this chapter can
be applied to power analysis in the analysis of covariance.

In the analysis of covariance (with a single covariate), each member of the
population has, in addition to a value Y (the variable of interest or dependent
variable) a value on another variable, X, called the concomitant or adjusting
variable, or covariate. A covariance design is a procedure for statistically con-
trolling for X by means of a regression adjustment so that one can study Y
freed of that portion of its variance linearly associated with X. In addition to
the assumptions of the analysis of variance, the method of covariance adjust-
ment also assumes that the regression coefficients in the separate populations
are equal. Detailed discussion of the analysis of covariance is beyond the scope
of this treatment; the reader is referred to one of the standard texts: Blalock
(1972), Winer (1971).

Instead of analyzing Y, the analysis of covariance analyzes Y', a regres-
sion-adjusted or statistically controlled value, which is

(8.3.9) Y =Y —b(X —X),

where b is the (common) regression coefficient of Y on X in each of the

populations and X is the grand population mean of the concomitant variable.
Y’ is also called a residual, since it is the departure of the Y value from the
Y X regression line common to the various populations.

The analysis of covariance is essentially the analysis of variance of the
Y’ measures. Given this, if one reinterprets the preceding material in this
chapter as referring to means and variances of the adjusted or residual
Y’ values, it is all applicable to the analysis of covariance.

For example, the basic formula for f (8.2.1) is oy/o. For covariance
analysis, o,, is the standard deviation of the k population’s adjusted means
of Y’, that is,m’, and o is the (common) standard deviation of the Y’ values
within the populations. The d measure of Section 8.2.1 is the difference
between the largest and smallest of the k adjusted means divided by the
within-population standard deviation of the Y’ values. The use and inter-
pretation of 7> as a proportion of variance and 7 as a correlation ratio
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now refers to Y, the dependent variable Y freed from that portion of its
variance linearly associated with X. And so on.

An academic point: In the analysis of covariance, the denominator
df is reduced by one (due to the estimation of the regression coefficient b).
This discrepancy from the denominator df on which the tabled power values
are based is of no practical consequence in most applications, say when
(u+ 1)(n —1)is as large as 15 or 20.

The analysis of covariance can proceed with multiple covariates X

(i=1,2,..., p)asreadily, in principle, as with one. The adjustment proceeds
by multiple linear regression, so that
(8.3.100 Y =Y—-b(X,-X,)-b, (X,-X,;)—---~b, (X, — X,).

Whether Y’ comes about from one or several adjusting variables, it remains
conceptually the same. The loss in denominator df is now p instead of 1,
but unless p is large and N is small (say less than 40), the resulting overesti-
mation of the tabled power values is not material.

The procedural emphasis should not be permitted to obscure the fact
that the analysis of covariance designs when appropriately used yield greater
power, in general, than analogous analysis of variance designs. This is
fundamentally because the within-population o of the adjusted Y’ variable
will be smaller than ¢ of the unadjusted Y variable. Specifically, where r is
the population coefficient between X and Y, o,/ =0,V1 —r% Since o
is the denominator of f [formula (8.2.1)] and since the numerator undergoes
no such systematic change (it may, indeed, increase), the effective f in an
analysis of covariance will be larger than f in the analysis of variance of
Y. This is true, of course, only for the proper use of the analysis of co-
variance, for discussion of which the reader is referred to the references cited
above.

No illustrative examples are offered here because all of the eight examples
which precede can be reconsidered in a covariance framework by merely
assuming for each the existence of one or more relevant covariates. Each
problem then proceeds with adjusted (Y’) values in place of the unadjusted
(Y) values in which they are couched.

A very general approach to the analysis of covariance (and also the anal-
ysis of variance) is provided by multiple regression/correlation analysis, as
described by Cohen and Cohen (1983). Some insight into this method and a
treatment of its power-analytic procedures are given in Chapter 9.

8.4 SAMPLE SiZE TABLES

The sample size tables for this section are given on pages 381—389; the
text follows on page 390.

8.4 SAMPLE SIZE TABLES 381
Table 8.4.1
n to detect f by F test ata = .01
foru=1,23 4
u =)
3
Power .05 L0 15 .20 .28 30 .35 ko .50 .60 .70 .80
.10 336 85 39 22 15 " 9 7 § & & 3
.50 1329 333 k9 8 55 39 29 22 15 11 9 7
.70 1924 482 215 122 79 55 41 32 21 15 12 9
. 2338 586 259 148 95 67 k9 38 25 1B 1 1
.90 2978 746 332 188 120 84 62 48 31 22 17 13
.95 3564 B892 398 226 144 101 7 57 37 26 20 16
K] 4808 1203 536 302 194k 136 100 77 SO 35 26 21
ux2
f
Power .08 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 307 79 36 21 th 10 8 6 5 & 3 3
+50 1093 275 123 70 L5 32 28 19 13 9 7 6
.70 143 387 173 98 63 L& 33 26 17 12 10 8
. 1851 46k 207 117 76 53 39 30 20 t 1 9
.90 2325 582 260 4y 95 €6 L9 38 25 18 1 N
.95 2756 690 308 178 N2 78 58 L5 29 21 16 12
.99 3658 916 h08 230 148 103 76 59 38 27 20 16
u=j
f
Power .08 40 .15 .20 .25 .30 .35 4o .so .60 .70 .80
.10 278 n 32 19 13 9 7 6 4 3 3 2
.50 933 234 105 59 38 27 20 16 1 8 6 5
.70 1299 326 146 83 53 37 28 22 W 10 8 7
.80 148 388 175 98 €3 bk 33 25 17 12 9 8
.90 1927 483 215 122 78 55 W 3t 21 15 N 9
.95 2270 568 253 143 92 66 48 37 2+ 17 13 10
.99 2986 747 333 188 121 8h 62 W8 3N 22 17 13
us=h
f
Power .05 10 .15 .20 .25 .30 .35 .o .50 .60 .70 .80
.10 253 [ 29 17 12 8 7 5 1 3 3 2
.50 820 206 92 52 3 24 18 1% w0 7 6 5
.70 1128 283 127 72 & 33 24 19 13 9 7 6
.80 134 336 150 8 55 38 29 22 15 N 8 7
.90 1661 416 18 105 68 47 35 27 18 13 10 8
95 1948 488 218 123 79 55 M 32 21 15 1" 9
99 2546 64O 286 160 103 76 53 M1 27 19 oM
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Table 8.4.2

n to detect f by F test at a = .01
foru=5,6,8, 10

u=5
f
Power .05 0 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
" .10 233 59 27 16 1 8 é 3 4 3 2 2
.50 737 185 82 L7 30 22 16 13 9 I3 5 4
.70 1009 253 113 & I 29 22 17 n 8 6 5
.80 1193 299 134 76 L9 34 26 20 13 10 7 [
.90 1h69 368 164 93 60 42 31 2 16 12 9 7
.95 1719 431 192 109 70 L4 36 28 18 13 10 8
.99 2235 560 249 1 91 63 47 36 26 17 13 10
u=b
f
Power .05 0 .15 20 .25 .30 .35 4O .50 .60 .70 .80
.10 218 55 25 15 10 7 6 5 3 3 2 2
.50 673 169 76 43 28 20 15 12 8 6 5 4
.70 917 230 103 58 38 27 20 15 {0 8 6 5
.80 1080 271 12t 68 bty 31 23 18 12 9 7 6
.90 1326 332 148 84 sh 38 28 22 % 10 8 (4
.95 1547 388 173 98 63 bl 33 25 17 12 9 7
.99 2003 502 224 126 81 57 b2 33 21 15 1n 9
u=8
f
Power .05 .10 5 .20 .25 .30 .35 4o .50 .60 .70 .80
.10 194 b9 23 13 9 6 5 L 3 3 2 2
.50 580 146 65 37 2k 17 13 10 7 5 L 3
.70 785 197 88 50 32 23 17 13 9 7 5 &4
.80 918 230 103 58 38 27 20 15 10 8 [ 5
.90 1122 281 126 n L6 32 25 19§12 9 7 [
.95 1303 327 146 83 53 37 28 22 1k 10 8 ¢
.99 1676 420 187 106 68 48 36 27 18 13 10 8
u=10
f
Power .05 L1015 .20 .25 .30 .35 .40 .50 .60 ,70 .BO
.10 176 Lg 21 12 8 6 [ 3 2 2 2
.50 515 129 58 33 21 15 12 9 6 5 b 3
.70 691 173 78 Lb 29 20 15 12 8 6 5 4
.80 810 203 91 51 33 23 18 4 9 7 5 &
.90 982 246 110 62 Lo 28 21 16 11 8 6 5
.95 1138 285 127 72 LY 33 2% 19 12 9 7 6
.99 ths6 365 163 92 60 b2 3t 24 16 1 9 7
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Table 8.4.3

n to detect f by F test at a = .01
foru=12,1524

383

uz 2

f
Power L0610 L5 .20 .25 .30 .35 kO .50 .60 .70 .BO
.10 162 A 19 1 8 5 L 4 3 2 2 2
.50 47 117 53 30 20 % 10 8 6 4 3 3
.70 623 157 70 Lo 26 18 14 1 7 § & 3
.80 726 182 82 W 30 21 16 12 8 6 5 &
.90 881 221 99 56 36 25 19 15 106 7 6 5
.95 1017 255 1% 65 42 29 22 17 1 8 6 5
.99 1297 325 145 83 53 37 28 21 14 10 8 6

usls
Power .05 10 .15 .20 .25 .30 .35 .ko .50 .60 .70 .80
.10 147 37 17 10 7 5 5y 3 2 2 2 -
.50 M3 1k b7 27 17 12 $ 7 5 & 3 3
.70 sk8 138 62 35 23 16 12 10 6 5 A 3
.80 632 159 T W 26 19 14 N 7 5 & 4
. 769 193 8 49 32 22 17 13 9 6 5 &
.gg 885 222 99 56 36 26 19 15 10 7 6 &
.99 125 282 126 72 L6 32 2h 19 12 9 7 &

u=2h

F

Power L0510 L¥5 .20 .25 .30 .35 .4o .50 .60 .70 .80
10 118 30 W 8 6 4 3 3 2 2 - -
.50 318 80 36 21 110 7 6 & 3 3 2
.70 bz 105 47 27 17 12 9 7 5 & 3 13
.80 48s 121 55 31 20 15 1N 8 6 & 3 3
.90 578 145 65 37 2 17 13 10 7 5 4 3
,3, 662 166 M K2 27 19 b 11 B8 6 & 4
.99 831 209 92 53 3% 26 18 W 9 7 5 4
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Table 8.4.4
n to detect f by F test ata = .05
foru=1234
u =l
f
Power .05 0 15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 8 22 10 é 5 L 3 03 2 e el ol
.50 769 193 86 k9 32 22 17 13 9 7 5 &4
.70 1235 310 138 78 50 35 26 20 13 10 7 [3
.80 157 393 175 99 64 45 33 26 17 112 9 7
.90 2102 526 234 132 85 59 44 3 22 16 12 9
.95 2600 651 290 163 105 1] sh b2 27 19 W n
.99 3675 920 409 231 148 103 76 58 38 27 20 15
use2
f
Power .05 Ld0 .15 20 .25 .30 .35 .40 .50 .60 .70 .80
.10 84 22 10 6 5 4 3 3 2 ce e e
.50 662 166 74 42 27 19 15 N 8 [3 5 4
.70 1028 258 115 65 b2 29 22 17 1 8 6 5
.80 1286 322 144 81 52 36 27 21 1% 10 8 6
.90 1682 421 188 106 68 48 35 27 18 13 10 8
.95 2060 515 230, 130 83 58 43 33 22 15 12 9
.99 2855 7% 318 179 118 8o 59 W6 29 21 16 12
us3
f
Power .05 Jd0 15 .20 .25 ,30 .35 .40 .50 .60 .70 .80
.10 79 21 10 6 [ 3 3 2 2 ee en em
.50 577 145 65 37 24 16 13 10 7 5 ) 3
70 881 221 99 56 36 25 19 15 10 7 6 5
.80 1096 274 123 69 h4s n 23 18 12 9 7 5
.90 s 35h 158 89 58 Lo 30 23 15 11 8 7
.95 178 430 192 108 70 LT 36 28 18 13 10 8
.99 2353 589 262 148 95 66 k9 38 24 17 13 10
ueh
f
Power .05 10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 7h 19 9 6 [ 3 2 2 e ee e e
.50 514 129 58 33 21 15 3] 9 [ 5 [} 3
.70 776 195 87 49 32 22 17 13 9 6 5 4
.80 956 240 107 61 39 27 20 16 10 8 é g
.90 1231 309 138 78 50 35 26 20 13 10 7 6
.95 1486 372 166 o 60 L2 3t 24 16 1 9 7
.99 2021 506 225 127 82 57 k2 33 2 15 1 9
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Table 8.4.5
n to detect f by F test ata = .05
foru=5,6,8 10
u=xs
f

Power 05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 69 18 9 5 &4 3 2 2 ee e e -
.50 67 117 53 30 19 & 10 8 6 & 3 13
.70 698 175 78 4 29 20 15 12 8 6 5 4
.80 856 215 96 sh 35 28 18 W 9 7 § 4
.90 1098 275 123 69 45 31 23 18 12 9 7 &
.95 1320 331 148 83 s 38 28 22 1 10 8 6
.99 1783 bh7 199 112 72 0 37 29 19 13 10 8

uzé
f

Power 05 10 15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 66 17 8 5 [ 3 2 2 e e em -
.50 b9 108 49 28 18 13 10 8 5 4 3 3
.70 638 160 72 U4 26 18 b 0 7 5 4 4
.80 780 195 87 50 32 22 17 13 9 6 5 4
90 995 250 112 63 u 29 21 16 1" 8 6 5
.95 1192 299 133 75 b9 3 25 20 13 9 7 &
.99 160 402 179 101 65 b6 3 26 17 12 9 7

us=8
F

Power .05 L0 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 60 16 7 5 3 2 2 e ae e ee am
.50 37h 9 42 28 16 M 8 7 5 & 3 2
.70 s5h8 138 61 5 23 1 12 9 6 § LK 1
.80 669 168 75 42 27 19 i 11 8 & &4
.90 88 213 95 sk 35 2 18 14 9 7 5 4
.95 1012 254 113 &4 1 29 22 17 n 8 6 &
.99 1351 338 151 8 5 39 29 22 5 10 8 6

u=10
[

Power 05 .10 .15 .20 .25 .30 .35 L0 .50 .60 .70 .80
.10 55 1h 7 b 3 2 T
.50 335 84 38 21 14 10 8 [3 4 3 3 2
.70 488 123 55 31 20 1 on 8 6 L 3 3
.80 591 148 66 38 24 17 13 10 7 g [ 3
.90 747 187 84 48 3 22 16 13 8 6 5 4
.95 888 223 99 56 36 26 19 15 10 7 5 &
.99 77 295 132 75 48 3% 25 19 13 9 7 6
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Table 8.4.6

n to detect f by F test at a = .05
foru= 12,15, 24

us=12
f
Power .05 Jo .15 .20 .25 .30 .35 4o .50 .60 .70 .80
.;g 3316 13 7 4 3 2 2 e e e el ew
. 77 35 20 13 9 7 6 4 3 2
.70 Ly3 m 50 28 18 13 10 8 5 1 ; 3
.80 534 134 60 34 22 16 12 9 6 5 4 3
.90 673 169 75 43 28 20 15 1 8 [3 4 L
.95 796 200 89 51 33 23 17 13 9 6 5 4
.99 1052 264 118 67 L3 30 22 17 n 8 6 g
u =15
f
Power .05 .10 .15 .20 .25 .30 .35 4o .50 .60 .70 .80
.10 L7 12 6 4 3 2 eee e e e ae am
.50 272 69 31 18 12 8 [3 5 4 3 2 2
.70 391 98 L 25 16 12 9 7 5 k 3 2
.80 W 118 53 30 20 14 10 8 6 L 3 3
.90 588 148 66 38 24 17 13 10 7 3 L 3
.95 697 175 78 Ly 29 20 15 12 8 6 [ 4
.99 915 229 102 58 38 26 20 15 10 7 3 4
u=24
f
Power .05 .10 15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.10 38 10 5 3 T
.50 213 54 24 4 9 7 5 4 3 2 2 .-
.70 303 76 34 20 13 9 7 5 4 3 2 2
.80 363 91 ] 23 15 1 8 [3 [ 3 3 2
.90 L1Y4 115 51 29 19 13 10 8 5 i 3 3
.95 525 132 59 34 22 15 11 9 6 4 L 3
.99 680 mm 76 Ll 28 20 15 N 8 6 [ L
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Table 8.4.7
n to detect f by F test ata = .10
foru=1,23,4
u =
F
Power .05 Jd0 5 .20 .25 .30 .35 .40 .50 .60 .70 .80
.50 g2 136 61 35 22 16 12 9 [ 5 4 3
.70 92 236 105 60 38 27 20 15 10 7 [3 [
.80 1237 310 138 78 50 35 26 20 13 9 7 6
.90 1713 429 191 108 69 L8 36 27 18 13 10 8
.95 2165 sh2 241 136 87 61 4s 35 22 16 12 9
.99 3155 789 1351 198 127 88 65 50 32 23 17 13
uw =
f
Power .05 Jd0 5,20 .25 .30 .35 .4o .50 .60 .70 .80
.50 475 19 53 30 20 ik 1" 8 6 & 3 3
.70 797 200 89 50 32 23 17 13 9 6 5 4
.80 1029 258 115 65 W 29 22 17 N 8 & s
.90 1395 349 156 88 57 ko 29 23 15 1 8 6
.95 1738 435 19k 109 70 L9 36 28 18 13 10 8
.99 75 619 276 155 100 70 51 33 2t 15 11 9
u=
F
Power .05 10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .BO
.50 419 106 47 27 18 12 9 7 5 4 3 3
.70 690 173 77 43 28 20 15 1 8 6 A A
.80 883 221 99 56 36 25 19 15 10 7 5 b4
.90 1180 296 132 74 48 3 25 19 13 9 7 5
.95 1458 365 163 92 59 W 30 24 15 11 8 7
.99 2051 513 229 129 83 58 43 33 2t 15 11 9
u =
£
Power .05 L0 15 .20 .25 .30 .35 Lo .50 .60 .70 .80
.50 376 95 43 24 16 2] 9 7 5 b 3 3
.70 612 154 68 38 25 18 13 10 7 5 L 3
.80 773 193 87 b9 32 22 17 13 9 6 5 4
.90 1031 258 115 65 b2 29 22 17 1 8 6 5
.95 1267 317 1 80 st 3 27 21 13 1w 7 6
.99 1768 43 197 1N 71 0 37 28 19 13 10 8
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Table 8.4.8 ’ Table 8.4.9
nto detect f by F test ata= .10 [ n to detect f by F test ata = .10
foru=5,6,8,10 : foru=12,15, 24
u=5 u=12
f f
Power .05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80 Power 05 .10 15 .20 .25 .30 .35 .40 .50 .60 .70 .80
.50 343 84 39 22 |1 10 8 6 4 3 3 2 . 22 8 26 15 10 7 [ 4 3 2 2 2
.70 551 139 61 35 23 16 12 9 6 &t 4 3 ,58 35§ gs o 23 15 11 8 6 L 3 3 2
-80 63 b 77 W28 20 a5 12 8 6 b b .80 W37 10 49 28 18 13 10 8 5 b 3 3
-90 922 231 103 58 37 26 20 15 10 7 6 4 .90 1 13 6k 36 2 17 12 10 6 5 b 3
.95 1128 283 126 71 46 32 24 18 12 9 7 5 _;5 2:7,8 17; 77 (1A 28 20 15 1 8 5 4 &
-99 1564 392 175 98 63 M 33 25 16 12 9 7 .99 931 233 104 59 - 38 27 20 15 10 7 5
us=é u=|5
f F
Power .05 .10 .15 .20 .25 .30 .35 .40 .50 .60 .70 .80 : Power o5 L0 a5 ,20 .25 .36 .35 o .50 .60 .70 .80
-50 a7 B 36 20 13 9 7 6 kK 3 3 2 .50 20 52 23 13 9 6 5 4 3 2 2 2
.70 506 127 57 32 21 15 " 9 [3 4 3 3 .;o 215 79 35 20 13 9 7 é N 3 2 2
.80 635 159 71 ko 26 18 b N 7 5 & 3 .80 386 97 W3 25 16 12 9 7 s & 3 2
-90 838 210 o4 53 34 2 18 k9 7 5 &4 .90 02 126 5 32 2 15 11 9 6 & 3 13
.95 1022 256 Mbk 65 k2 29 22 17 N 8 & § .gs 203 151 68 38 25 17 13 10 7 5 Lk 3
.99 1408 353 157 89 57 ko 30 23 15 N 8 6 .99 812 203 91 51 33 23 17 13 9 6 5 4
u=8 u=2h
f
Power 05 10 15 .20 .25 ,30 .35 .ko .50 .60 .70 .80 Power 05 L1015 .20 .25 .30 ,35 b0 .50 .60 .70 .80
-39 g 10 32z 18 12 9 6 5 b3 2 2 0 161 W18 1 5 4 3 2 2 - -
-70 436 1Mo k9 28 18 13 10 B 5 b 3 3 :;o W6 62 27 16 " 7 6 5 3 2 2 2
.80 Ses 137 61 35 23 16 12 9 6 5 L 3 ‘80 298 75 3 19 12 9 7 5 4 3 2 2
.90 N7 180 80 46 29 21 '5 12 8 [ 4 [ 82 6 [ 25 '6 11 e 7 5 3 3 2
.95 B0 218 97 55 36 25 19 W 9 7 5 4 95 i€ 1k 2 % 15 13 10 8 5 4 3 3
-99 1190 298 133 75 49 3 25 19 13 9 7 5 99 607 152 68 39 25 17 13 10 7 5 Ak 3
us=l0
f
Power 05 10 15 .20 .25 .30 .35 b0 .50 .60 ,70 .80
.50 250 63 28 16 N 8 6 5 3 31 2 2
.70 390 98 W 25 16 1 9 7 5 b 3 2
.80 bz 121 sk 31 20 W 11 8 & & 3 3
.90 633 159 71 4O 26 18 s 11 7 5 4 13
.95 765 192 86 4y 3 22 16 13 8 6 5 §
.99 1040 261 116 66 b2 30 22 17 11 8 6 &
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The tables in this section list values for the significance criterion (a),
the numerator degrees of freedom (u), the ES to be detected (f), and the
desired power. The required size per sample, n, may then be determined.
The chief use of these tables is in the planning of experiments where they
provide a basis for decisions about sample size requirements.

The 33 tables are laid out generally four to a table number, by a levels
and successively tabled u values within each a level. The subtable for the
required a, u combination is found and f and desired power are located.
The same provisions for a, u, and f are made as for the tables in Section 8.3,
as follows:

1. Significance Criterion, a. Table sets are provided for nondirectional
a of .01, .05, and .10, each set made up of tables for varying values of u.

2. Numerator Degrees of Freedom,u. For each a level, tables are provided
in succession for the 11 values of u=1 (1) 6 (2) 12, 15, 24. Since the num-
ber of means to be compared is k =u+ 1, the tables can be used directly
for sets of means numbering k=2 (1) 7 (2) 13, 16, and 25, and for inter-
actions whose df equal the above 11 values of u. For missing values of u
(7,9, 11, etc.), linear interpolation between tables will yield adequate approxi-
mations to the desired n.

3. Effect Size, f. f wasdefined and interpreted for equal n in Sections
8.2, and generalized for unequal n in Section 8.3.2 and for interactions in
Section 8.3.4. As in the power tables, provision is made in the sample size
tables for the 12 values: .05 (.05) .40 (.10) .80. Conventional levels have
been proposed (Section 8.2.3), as follows: small ES: f=.10, medium ES:
f=.25, and large ES: f=.40. (No values of n less than 2 are given, since
there would then be no within-population variance estimate from the data.)

To find n for a value of f not tabled, substitute in

(8.4.1) ne= 205 4,

400f2
where n 5 is the necessary sample size for the given a, u, and desired power
at f=.05 (read from the table), and f is the nontabled ES. Round to the
nearest integer.

4, Desired Power. Provision is made for desired power values of .10
(except at a = .10 where it would be meaningless), .50, .70, .80, .90, .95, .99.
See 2.4.1 for the rationale for selecting such values for tabling, and particu-
larly for a discussion of the proposal that .80 serve as a convention for
desired power in the absence of another basis for a choice.
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8.4.1 Case 0: k Means witH EQUAL n. The sample size tables were
designed for this, the simplest case. Find the subtable for the significance
criterion (a) and numerator df (k — 1 =u) which obtain and locate f and
desired power, to determine n, the necessary size per each sample mean.
For nontabled f, use the tables to find n ;5 and substitute in formula (8.4.1).

Ilustrative Examples

" 8.10 Reconsider the educational experiment on the differential effective-
ness of k =4 teaching methods to equal sized samples of n =20 (example
8.1). Using a == .05 as the significance criterion, and f = .28, it was found that
power was approximately .53. Now we recast this as a problem in experi-
mental planning, where we wish to determine the sample size necessary to
achieve a specified power value, say .80. Initially, to illustrate the simplicity
of the use of the sample size tables for tabled values of f, we change her
specification of f to .25, our operational definition of a medium ES. Sum-
marizing, the conditions for determining n for this test are

a = .05, u=k—-1=3, f= .25, power = .80.

In the third subtable of Table 8.4.4 (for a=.05, u=3) with column
f=.25, and row power = .80, we find that we need n =45 cases in each of
the 4 method groups. Thus, slightly scaling down her ES from .28 to .25, she
needs 4(45) = 180 = N to have .80 probability of a significant result at a =
.05.

Since her f was originally .28, we illustrate the determination of n for this
nontabled value, leaving the other specifications unchanged:

a=.05, u=3 f=.28, power = .80.

For nontabled f, we use formula (8.4.1). For n 45, the sample size needed
to detect f = .05 for a = .05, u = 3 with power = .80, we use the same subtable
as above, the third subtable of Table 8.4.4 (for a = .05, u = 3) with column
f=.05 and row power = .80 and find n 45 = 1096. Sutstituting in formula
(8.4.1),

e 1096 = 1096
T 400(.28%) 31.36
Thus, she would need 36 cases in each of the 4 groups to have power of

.80 to detect f=.28 at a = .05, (This value of n is, as it should be, smaller
than that which resulted when a smaller f of .25 was posited above.)

+1=3509.

8.11 We reconsider the social psychiatric research of example 8.2,
now as a problem in experimental planning. A pool of suitable in-patients
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is to be randomly assigned to k =3 equal samples, and each subjected to
a different microsocial system. Following this treatment, criterion measures
will then be F-tested at a =.01. Temporarily, we revise the team’s two
proposed ES measures (the basis for which is described in example 8.2),
f=.229 and .333, to a range of four tabled values: f= .20, .25, .30,. 35. It
is desired that power be .90 and we seck the n required for each of these
specifications, which, in summary, are

.20
25
.30°
35

a = .01, u=k—-1=2, f= power = .90.

We use the second subtable of Table 8.4.1 (for a=.01, u=2) at row
power = .90 and columns f=.20, .25, .30, and .35 and find the respective
per sample w’s of 147, 95, 66, and 49. Thus, for these conditions, an f of
.20 requires three times as large an experiment as an f of .35. Note that in
terms of proportion of variance, the respective n* for these values are .0385
and .1091 (Table 8.2.2).

Having illustrated the direct table look-up afforded by tabled f values,
we turn to the actual f values posited by the two factions on the research
team in the original example, .229 and .333. These nontabled values require
the use of formula (8.4.1). The specifications are

229

333° power = .90.

a=.0l, u=2, f= {

For n g5, the sample size needed to detect f=.05 for a=.01, u=2,

with power .90, we use the second subtable of Table 8.4.1 (fora=.01, u=2)

with column f = .05 and row power = .90 and find n 55 = 2325. Substituting
it and f=.229 in formula (8.4.1),

2325
"= ooczzoy TS
and for f=.333,
2325
n= m +1=153.8.

Thus, if the “weak effect’” faction (f =.229) is correct, samples of 112
cases are required, while if the “strong effect” faction (f=.333) is correct,
only 54, less than half that number, are required per sample.

If they compromise by splitting the difference in n and use (111 + 53)/2 =
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82 cases, we can solve formula (8.4.1) for §, the “detectable effect size,”
for given a, desired power, and n:

. Nos
(8.4.2) f—\/4—————00(n )

_\/ 2325 _
V4008 T

The interpretation of this result is that for an F test at a = .01 of three
means each based on 82 cases to have power of .90, the population ES
must be f=.268. Since the relationship involved is not linear, splitting the
difference in n does not split the difference on f. The latter would be f=
(.229 4+ .333)/2 = .281. If the latter was the basis for compromise, the experi-
ment would demand, applying formula (8.4.1) to these specifications,

2325

n= W+1=746,

or 75 cases.

There is yet a third way of splitting the difference, i.e., between the .05
and .10 proportion of variance of criterion accounted for by experimental
group membership, 5% If the compromise is effected on this basis, 7% =
(.05 + .10)/2 = .075. Then, from formula (8.2.22),

Substituting this value of f with the n g5 == 2325 for these conditions in
formula (8.4.1),

n= 2325 +1=72.6

T 400(.285%) 1 T
or 73 cases, which hardly differs from the n demanded by averaging the f’s
(75). This will generally be the case unless the two f’s are very widely separ-
ated.

8.4.2 Case 2: k MEeANs witH UNEQUAL n. Sample size decisions for re-
search planning in Case 2 offer no special problems. One must keep in mind

3 The concept “detectable effect size” transcends its applications here. It is useful in
post hoc power analysis, particularly in the assessment of failures to reject the null hypo-
thesis and in summarizing the results of a series of experiments bearing on the same issue.
See Cohen (1965, p. 100; 1970, p.828).
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that with unequal n;, fis the standard deviation of the p;-weighted standar-
dized means, as described in Section 8.3.2. When the sample size tables are
applied with the usual specifications, the n indicated in Case 2 is the average
sample size of the k samples, i.e., n =N/k. Similarly, for nontabled f, the n
found from formula (8.4.1) is the average sample size.

The unequal n; case arises in research planning in various circumstances.

1. In political opinion, market research, or other surveys, where a
total natural population is sampled and constitutent populations are of
varying frequency, e.g., religious affiliations (as illustrated in Section 8.3.2),
socioeconomic categories, etc. (See example 8.12 below.).

2. In experiments where one or more samples of fixed size are to be used,
and the size of one or more samples is open to the determination of the
experimenter. For example, scheduling problems may dictate that a control
sample is to have 50 cases, but the sample sizes of two experimental groups
can be determined using considerations of desired power.

3. In some experiments, it may be desired that a reference or control
sample have larger n than the other k—1 samples. (See example 8.12
below.)

In each of these circumstances, the average n which is read from the

tables [or computed from formula (8.4.1)] is multiplied by k to yield the .

total N.

Ilustrative Examples

8.12 To illustrate Case 1 in surveys of natural populations, return
to example 8.3, where a political science class designs an opinion survey of
college students on government centralism. A source of variance to be
studied is the academic areas of respondents of which there are 6 (= k).
The f for the anticipated unequal n; is posited at .15, and a =.05. Now,
instead of treating this as a completed or committed experiment (where
total N was set at 300 and power then found to be .48), let us ask what N
is required to attain power of .80. The specifications are

a =05, u=k-—-1=35, f=.15, power = .80.

In the first subtable of Table 8.4.5 (for a = .05, u=>5) at column f=15
and row power = .80, n =96. This is the average size necessary for the 6
academic area samples. The quantity we need is the total sample size, N =
6(96) = 576.

Example 8.3 went on to consider the effect on power of a reduction of
k from 6 to 3 more broadly defined academic areas. Paralleling this, we
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determine N needed for k = 3, keeping the other specifications unchanged:
a =05, u=k—-1=2, f=_15, power = .80.

From the second subtable of Table 8.4.4 (for a = .05, u = 2) for column
f=.15, row power =.80, we find n = 144, so that N = 3(144) = 432. Note
that going from 6 to 3 groups results here in a 259 reduction of the N
demanded (from 576 to 432). Of course, we assumed f to remain the same
which would probably not be the case. '

. 8.13 A psychophysiologist is planning an experiment in which he
will study the effect of two drugs (A and B) on neural regeneration relative
to a control (C). He plans that n, =ng (which we call n) but n is to be
409, larger, i.e,, nc = 1.4ng. He posits that the three within-population-
standardized mean differences will be (m, —m) = — 5, (mg—m) = +.5, and
(mc—m) =0, that a =05, and he wishes power to be .90. To determine

the necessary sample size, he must first find the f implied by his alternate-
hypothetical means. His total sample size is

N =ng +n; + [.4n; = 3.dn, ,

SO
MM
Pa =Pp = N $an, 294
and
Lang  1.4ng
Pc = N 34n, = 412

Combining formutas (8.3.1), (8.3.2), and (8.2.1),*

(84.3) f= \/ZP‘(mi;m>z

= Vv.294(—.5%) + .294(+.5%) + 412(0%) = V/.1470 = .38.

Collecting the specifications,
a =05, u=k—]1=2, f=.38, power = .90,

“Altl}ough the means are equally spaced, we cannot use the d procedures of Section
8.2.1, which are predicated on equal n.
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Since f is not tabled, we proceed to find the average n by formula (8.4.1),
which calls for n o5, the n required for these specifications of a, u, and power
when f = .05. In the second subtable of Table 8.4.4, a = .05 and u = 2, Tow
power = .90, and f = .05, n o5 = 1682. Applying formula (8.4.1),

1682 =301
n=ao0(aEn
But this n is for Case 1, the average n per sample. The total N = 3(30.1) =
90.3. The sample sizes are unequal portions of this, as specified: The sample
size of groups A and B are each .294(90.3) = 27 and of group C is .412(90.3) =
37. Thus, with sample sizes respectively for A, B, and C of 27, 27, and 37,
he will have a .90 probability that his F test on the 3 sample means will meet
the .05 significance criterion, given that f=.38.

8.4.3 CAasEs 2 AND 3: FIXED MAIN AND INTERACTION EFFECTS IN FAC-
TORIAL AND COMPLEX DESIGNS. Infactorial design, the power values of tests
of both main and interaction effects are determined by the design’s denomina-
tor df, which in turn depends upon a single given cell sample size (n.). It is
therefore convenient to present sample size determination for all the effects
together for any given design. (In other complex designs, i.e., those with more
than one source of nonerror variance, the same methods apply, although there
may be different denominator dfs for different effects.) The reader is referred
to Sections 8.3.3 and 8.3.4 for discussions of interaction effects and the
interpretation of 5 and n? as partial values.

The procedure for using the tables to determine the sample size required
by an effect is essentially the same as for Cases 0 and 1. The sample size table
(for specified a and u) is entered with f and the desired power, and the n is
read from the table. However, this n must be understood as the n’ of formula
(8.3.4), a function of the denominator df and the df for the effect, u. The cell
sample size implied by the n’ value read from the table is then found from

=D+

8.4.4 =
( ) M = umber of cells

where u is the df for the effect being analyzed, and “ number of cells” is the
number of (the highest order of) cells in the analysis, e.g., for all main and
interaction effects in an R x € x H design it is rch. We assume throughout
that all cells have the same n,. The n, thus computed need not be an integer.
It is therefore rounded up to the next higher integer (or down, if it is very close
to the lower integer) to determine the cell sample size that must actually be
employed. Multiplying this integral n, value by the number of cells in the
design then gives the actual total N required by the specifications for the effect
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in question.

When f is not a tabled value, one proceeds as in Cases 0 and 1 to find n
by formula (8.4.1). This is again n’, and one proceeds as above to determine
n,and N.

Since the tests of the various effects in a factorial (or other complex) design
will demand different Ns, these must then be resolved into a single N which
will then be used in the experiment.

Illustrative Examples

8.14 Reconsider example 8.6, now as a problem in sample size deter-
mination to achieve specified power. The experiment is concerned with the
effects on persuasibility in elementary school boys of sex of experimenter
(S), age of subject (A), and instruction conditions (C), in respectively a
2 x 3 x 4 (=24 cells) factorial design. The ES posited for the three main
effectsare fs = .10, fp = .25 and f¢ = .40 and for all interaction tests, f = .25;
all the tests are to be performed at a = .05. Assume that power of .80 is de-
sired for all of the tests, subject to reconsideration and reconciliation of the
differing N’s which will result.

For the S effect, the specifications are thus:
= .05, u=2-1=1, f=.10, power = .80.

In the first subtable of Table 8.4.4 for a = .05, u = 1, with column f = .10
and power = .80, we find the value 394. Treating it as n’, we then find from
formula (8.4.4) that the cell sample size implied by n" is

(94— 1)1+ 1)
Me = 2% +

and the actual total N required for the S effect by these specifications is
24(34) = 816 (!). Although conceivable, it seems unlikely that an experiment
of this size would be attempted. Note that f = .10 operationally defines a small
ES, and we have seen in previous chapters that to have power of .80 to detect
small ES requires very large sample sizes. This virtually restricts such at-
tempts to large scale survey research of the type used in political polling and
to sociological, market, and economic research.

Consider now the N'demanded by the specifications for the age effect,
which are

1 = (33.75) = 34,

a=.05, u=3-1=2, f=.25, power = .80.

In the second subtable of Table 8.4.4, for a = .05 and u = 2, with column
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f = .25, and row power = .80, we find the n (= n’) value of 52. Substituting

in (8.4.4), n,= (52— )2+ 1)/24 + 1 =(7.38=) 8, hence the actual total -

N = 24(8) = 192. This more modest n demand is primarily due to positing
f = .25 (medium ES).
Finally, we find n required for the test on C, as specified:

a=.03, u=4-1=3, f= 40, power = .80.

The third subtable of Table 8.4.4 (for a = .05, u = 3) at f = .40, power =
.80, yields the value 18 for n(=n’').n = (18 = 1)(3 + 1)/24 + 1 = (3.8 =) 4,
so the total N required is 24(4) = 96. This relatively small required N is
primarily a consequence of positing f = .40, a large ES.

Taking stock at this point, the three tests of the main effects, of varying
specifications, have led to varying N demands of 816 for S, 192 for A, and
96 for C.

Turning now to the tests of the interactions, they all share the same
a = .05, f=.25, and the power desired specified at .80. They differ only in
their u values, but this means that they will differ in n” and therefore N:

For S x A, u=(2— )3 — 1) = 2. The specifications are the same as for
the A main effect (a = .05, u= 2, f=.25, power = .80), so the results are
the same: eight cases per cell, hence N = 192.

For S x C, u=(2 — 1)(4 — 1) = 3. From the third subtable of Table 8.4.4
(a = .05, u = 3), for power = .80 when f = .25, the value n' = 45 is found.
Formula (8.4.4) then gives n,=(45— 1)(3+1)/24 +1)=(8.33=) 9, and
N = 24(9) = 216.

For A x C, u=(3 — 1)4 — 1) = 6. The second subtable of Table 8.4.5
(a = .05, u=6) gives n’ = 32 for power = .80, f = .25. Formula (8.4.4) then
gives n, = (32 — 1)(6 + 1)/24 + 1 = (10.04 =) 10 (We round down here
since 10.04 is only trivially larger than 10.) N is therefore 24(10) = 240.

Finally, for the test of the 8 x A x C interaction effect, u = Q-1
(3 — 1)(4 — 1) = 6, and the specifications are the same as for A x C, therefore
n. = 10 and N = 240.

We have thus had an array of N values demanded by the three main and
four interaction effects ranging from 96 to 816, and some choice must be made.
Table 8.4.10 summarizes the specifications and resulting sample size demands
for the seven tests of this 2 x 3 x 4 factorial design. Surveying the results of
this analysis, the researcher planning this experiment may reason as follows:

The central issues in this research are the interactions, so the fact that
adequate power for the small S effect is beyond practical reach (816 cases in
a manipulative experiment is virtually unheard of) is not fatal. If an experi-
ment as Jarge as N = 240 can be mounted, power of at least .80 at a = .05
can be attained for the ES values specified. The actual power values for all
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the tests are then determined by the methods of Sections 8.3.3 and 8.3.4. They
turn outto be: S .31, A 91, C >.995,S x A .92, S x C .88, A x C .80, and
S x A x C .30.

TABLE 8.4.10

SAMPLE SiZE DEMANDS FOR THE MAIN AND INTERACTION EFFECTS IN THE
S X A X C (2 x 3 X 4) FACTORIAL DESIGN

Specifications

Effect a u f Power n, N
S .05 1 .10 .80 34 816
A .05 2 25 .80 8 192
C .05 3 .40 .80 4 96
S xA .05 2 .25 .80 8 192
SxC .05 3 .25 .80 9 216
AxC .05 6 .25 .80 10 240
SxAXC .05 6 .25 .80 10 240

Alternatively, it may well be the case that N = 240 exceeds the resources
of the researcher, but after studying Table 8.4.10 he decides that he can
(barely) manage eight cases per cell and N = 192; this will provide adequate
power for A, C, and S x A (S is hopeless, anyway). The actual power values
with N = 192 for the tests of the interactions are then determined to be:
Sx A .84,SxC.79, AxC .68 and S x A x C .68. The planner may be
willing to settle for these values and proceed with N = 192.

On the other hand, we may judge that the two-to-one odds for rejection
in the F tests of the A x Cand S x A x C interactions are not good enough.
He may be willing to decide, a priori, that he is prepared to test these inter-
actions at a = .10. Note that he need not shift to a = .10 for the other tests.
He is simply prepared to offer a somewhat less credible rejection of these two
null hypotheses if it should turn out that the increase in power is sufficient to
make it worthwhile. These tests will thus have the same specifications: a = .10,
u =6, f= .25, and, since N = 192, denominator df = 192 — 24 = 168, and
n’ = 168/(6 + 1) + 1 = 25. Looking up n = 25 at f = .25 in Table 8.3.28 (for
a = .10, u = 6), he finds power = .78. He may then consider whether he pre-
fers power of .68 at a = .05 or power of .78 at a = .10 for these two tests, a
not very happy pair of alternatives. (A factor in his decision may be his
judgment as to whether f = .25 is a possibly overoptimistic estimation of the
true ES. If so, he had better opt for the a = .10 alternative since, at a = .05,
power would be less than .68).

There is another device available in research planning to bring sample size
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demands into conformity with available resources, already illustrated in prob-
lem 8.3. One should consider dropping the number of levels of a research
factor in order to reduce the size of u, particularly in interactions. In this
illustration, if only two age groups are used, u = 3 for A x Cand S x A x C,
For N =192, now in 2 x 2 x 4 = 16 cells (hence, n, = 12), the denominator
df will be 192 — 16 = 176, and n’ will be 176/(3 + 1) =1 =45. For a = .05
and u = 3, Table 8.3.14 gives power = .81 at f = .25 for n = 45. This appears
to be the preferred resolution of the problem in this illustration. In other cir-
cumstances an entire research factor may be dropped in the interests of in-
creasing power or decreasing sample size demand for the remainder of the
experiment.

8.15 We return to example 8.9 which described a learning experiment of
the effects of age (R) at r = 2 levels and contingency of reinforcement (C) at
c =4 levels on a measure of learning, so that there are 2 x 4 = 8 cells. Al-
though f may be specified by using the operational definition conventions,
example 8.9 illustrated how f values for the main effects and interaction are
arrived at by positing values for the alternate-hypothetical cell means and
within-population ¢ and computing them from these values. We found there
that f for R was .375, for € .523, and for R x € .293. The problem is now
recast into one in which sample size is to be determined, given the desired
power and the other specifications. Assume initially that all three tests are to
be performed at a = .05 and that the power desired is at least .80.

For the test of the R (age) effect, the specification summary is thus:

a = .05, u=r—1=1, f =375, power = .80.
Since f = .375 is not a tabled value, we proceed by means of formulas (8.4.1)

and (8.4.4). In the first subtable of Table 8.4.4 (a = .05, u = 1), at power =
.80, the value at f = .05 is 1571. Thus, from (8.4.1),

1571

n :W+1=28.93,

and then applying formula (8.4.4),

2893 - D +1
nc=(—8—)—(——i-2+ 1 =(7.98 =) 8,
so that each of the eight cells will have eight cases, and N = 64 cases are
required for the test of the R effect.

For the test of the reinforcement contingency (C) effect, the specifications
are:

a =05, u=c-1=3, f=.523, power = .80.
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The third subtable of Table 8.4.4 (a = .05, u = 3), gives n o5 = 1096 for
power = .80. Formula (8.4.1) then gives, for f = 523,
1096

- L 1=1102
"= 00053

and formula (8.4.4) gives
n (112 -DH3 +1)
¢ 8
so that N = 8 x 6 = 48, a substantially smaller demand for the test of the C

effect.
The specifications for the test of the R x € interaction effect are:

+1=(6.01=)6,

a = .05, u=(r—1)c-1)=3, f=.293, power = .80,

and, since a, u, and power are the same as for the R main effect, the n o5 =
1096 is the same. For f = .293,

1096
m e 1123292,
"= Zooc2om T

and
ho— (3292 -3+ 1)
=T

so N =8 x 17 = 136 for the R x C test.

So again, as will so often be the case for interactions, the sample size de-
mand is large relative to those for the main effects. If the experimenter is pre-
pared to mount that large an experiment, power for testing the interaction
effect will be .80, and it will be much better than that for the main effects:

R: a=.05 u=1, f=.375, n" =(136—-8)/(1 +1)+1=65.
From Table 8.3.12, power = .99.
C: a=.05 u=3 f=.523 n=(136-8)/3+1)+1=33

+ 1 =(16.96 =) 17

From Table 8.3.14, power > .995.

If the experimenter finds N = 136 a larger experiment than he can manage,
he may investigate the consequence to the N required by switching to an
a = .10 criterion for the R x C test. For this change in the specifications,
n s for a=.10, u =3 (third subtable of Table 8.4.7) is 883, n’ = 26.71,
n, = 14 and N =112.

As another possibility, he may retain a = .05, but settle for power = .70
for the R x C test. From Table 8.4.4 for a = .05, u =3, n 45 is found to be
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881, so n'is computed as 26.66, n, as 14 and N = 112. Thus, for the reduction
in N from 136 to 112, he may either use the lenient a = .10 criterion with
power = .80, or the conventional a = .05 but with power = .70.

Finally, as in the preceding problem, he may consider giving up one of the
reinforcement conditions so that there are only 2 x 3 = 6 cells and the u for
R x C s reduced to (2 — 1)(3 — 1) = 2. If the choice of which condition to
omit may be made on purely statistical grounds, the table of alternate-hypo-
thetical population means presented in problem 8.9 above suggests that C;is
the best candidate. Note that the omission of the means for C, will change all
three f values. The f for R x C increases to .328 (and is slightly decreased for
the main effects). For the revised 2 x 3 design, then, the specifications for
R x C are:

a =05, u=2 f =328, power = .80,
and via formulas (8.4.1) and (8.4.4), n, is found to be 16 and N =6 x 16 =
96. (The reader may wish to check the above as an exercise.) Thus, by re-
moving the condition that makes the least contribution to the interactjon, its
f is increased (from .293 to .328), its u is decreased, and the result is that for
= .05 and power = .80, 96 rather than 136 cases are required. The experi-
menter might well decide to follow this course.

This and the preceding problem tell a morality tale about research design.
The possibility of studying many issues within a single experiment, so well
described in the standard textbooks on experimental design and the analysis
of variance, should be accompanied by a warning that the power of the result-
ing tests will be inadequate unless N is (usually unrealistically) large or the
ESs are (also usually unrealistically) large. Recall that this principle is not re-

TABLE 8.4.11

n PER GROUP AND ToTAL N as A FUNCTION oF k For k GRouPps,
UNDER THE CONDITIONS a = .05 AND POWER = .80 FOR f = .25

k u n N
2 | 64 128
3 2 52 156
4 3 45 180
5 4 39 195
6 5 35 210
7 6 32 224
9 8 27 243
11 10 24 264
13 12 22 286
16 15 20 320
25 24 15 375
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stricted to factorial or other complex designs; a simple one-way analysis of
variance on k groups will, unless f is large, require relatively large N (as
illustrated in problem 8.3). Consider the standard conditions a — .05, f=.25
(medium ES), and desired power = .80 for a one-way design with k groups.
Table 8.4.11 shows now the required n per group and total N (= nk) vary
as k increases (the n values are simply read from Tables 8.4.4-8.4.6). Although
the required sample size per group decreases as k increases, the total N in-
creases with k. Although for a medium ES 150 subjects provide adequate
power to appraise two or three treatments, that number is not sufficient for
six or seven. The reader might find it instructive to construct and study tables
like 8.4.11 for other values of f and a.

8.4.5 THE ANALYSIS OF COVARIANCE. As was discussed in the section
on the use of the power tables in the analysis of covariance (8.3.5), no special
procedural change takes place from analogous analysis of variance designs.
What changes is the conception of the dependent variable, which becomes
Y’, a regression-adjusted or statistically controlled value [defined in formula
(8.3.9)], whose use may result in a larger ES than the use of the unadjusted
Y. Population means, variances, ranges, etc., now merely refer to this adjusted
variable in place of the unadjusted variable of the analysis of variance. For
more detail, see Section 8.3.5. See also the alternative approach to data-
analytic problems of this kind by means of multiple regression/correlation
analysis in Chapter 9.

Thus, sample size estimation in the analysis of covariance proceeds in
exactly the same way as in analogous analysis of variance designs.

8.5 THE USeE oF THE TABLES FOR SIGNIFICANCE TESTING

8.5.1 INTRODUCTION. As is the case in most of the chapters in this
handbook, provision for facilitating significance testing has been made in
the power tables as a convenience to the reader. While power analysis is
primarily relevant to experimental planning and has as an important para-
meter the alternative-hypothetical population ES, once the research data
are collected, attention turns to the assessment of the null hypothesis in the
light of the data (Cohen, 1973). (See Section 1.5, and for some of the advan-
tages of the corollary approach in t tests, Section 2.5)

Because of the discrepancy between the actual denominator df in a fac-
torial or other complex design and the one-way design (Cases 0 and 1) as-
sumed in the construction of the tables, it does not pay to undertake the
adjustments that would be necessary to use the tabled values of F. for sig-
nificance testing in Cases 2 and 3, since F tables are widely available in
statistical textbooks and specialized collections (e.g., Owen, 1962). Accord-
ingly, we do not discuss or exemplify the use of the F. values in the power
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tables in this handbook for significance testing of fixed main effects or inter-
actions (Cases 2 and 3).

For significance testing, the function of the data of interest to us in the
Case 0 and 1 applications of this chapter is the F ratio for the relevant null
hypothesis which is found in the sample, F,.

In each power table (8.3) for a given significance criterion a and numerator
df, u, the second column contains F_, the minimum F necessary for signifi-
cance at the a level for thatu. The F_ values vary with n, the relevant sample
size. Significance testing proceeds by simply comparing the computed F;
with the tabled F..

8.5.2 SIGNIFICANCE TESTING IN CAsSE 0: k MEANS wiTH EQUAL n. Find
the power table for the significance criterion (a) and numerator df, u=k -1,
which obtain. Enter with n, the size per sample mean, and read out F.. If
the computed F, equals or exceeds the tabulated F,, the null hypothesis is
rejected.

DNlustrative Examples

8.16 Assume that the educational experiment described in 8.1 has been
performed: a comparison. (at a =.05) of the differential effectiveness of
k =4 teaching methods, for each of which there is a random sample of
n = 20. Whatever the history of the planning of this experiment, including
most particularly the anticipated ES (f =.280), what is now relevant is the
F value (between groups mean square/within groups mean square) com-
puted from the 4(20) = 80 achievement scores found in the completed experi-
ment, F,. Assume F, is found to equal 2.316. Thus, the specifications for the
significance test are

a =05, u=k—-1=3, n =20, .= 2.316.

To determine the significance status of the results, checking column
F. of Table 8.3.14 (@ =.05, u=3) for n=20 gives F,=2.725. Since the
computed F, of 2.316 is smaller than the criterion value, the results are not
significant at a = .05, i.e., the data do not warrant the conclusion that the
population achievement means of the four teaching methods differ.

8.17 In example 8.2, a power analysis of an experiment in social psy-
chiatry was described in which k =3 equal samples of n =200 each were
subjected to different microsocial systems. Consider the experiment com-
pleted and the data analyzed. In planning the experiment, it was found that
for the population ES values which were posited, at a =.01, power would
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be very large. This is, however, not relevant to the significance-testing proce-
dure. Assume that the F is found to equal 4.912. What is the status of the
null hypotheses on the three population means? The relevant specifications
are

a=.0l, u=k—1=2, n =200, F, =4.912.
Table 8.3.2 (for a=.01 and u=2) with row n =200 yields F, =4.642.

Since F, exceeds this value, the null hypothesis is rejected, and it is concluded
(at a = .01) that the three population means are not all equal. Note that one
does not conclude that the population ES of the power specifications (in
this case there were two values, 7% = .05 and .10, or f= .23 and .33) neces-
sarily obtains. In fact, the sample »* is uF/[uf + (u+ [)(n— 1)]=.016
and the best estimate of the population n? is .013 (=¢?). See section 8.2.2

above and Cohen (1965, pp. 101-106 and ref.).

8.5.2 SiGNIFICANCE TESTING IN Casé 1: k MEeANs wiTH UNEQUAL n.
When the sample n’s are not all equal, the significance testing procedure
is as in Case 0 except that one enters the table with their arithmetic mean,
i.e., N/k [formula (8.3.3)]. This will generally not yield a tabled value of n,
but the n scale is such that on the rare occasions when it is necessary, linear
interpolation between F_ values is quite adequate.

IHustrative Examples

8.18 Example 8.3 described an opinion poll on government centralism
on a college campus in which there would be a comparison among means
of k =6 academic area groups of unequal size, with a total sample size of
approximately 300. The F test is to be performed at a =.05. Assume that
when the survey is concluded, the actual total N =293, and F, =2.405.
Since N =293, the n needed for entry is N/k =293/6 = 48.8. What is the
status of the null hypothesis of equal population means, for these specifi-
cations, i.e., '

a=.05, u=k—1=5, n =488, F, = 2.405.

In Table 8.3.16 (for a= .05, u=>5) see column F,. There is no need for
interpolation, since, using the conservative n of 48, F =2.246, which is
exceeded by F, =2.405. Therefore, the null hypothesis is rejected, and it
can be concluded that the academic area population means on the centralism
index are not all equal. (Note again the irrelevance to conclusions about the
null hypothesis of the alternate-hypothetical ES of the power analysis
described in example 8.3. )
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8.19 1In example 8.4, samples of varying n of psychiatric nurses from
k =12 hospitals were to be studied with regard to differences in mean
scores on an attitude scale of Social Restrictiveness towards psychiatric
patients. The total N =326, so the average n per hospital is N/k = 27.2.
The significance criterion is a = .05. When the data are analyzed, the F,

of the test of Hy: my =m, = ... =m, equals 3.467. The specifications
for the significance test, thus, are

a= .05, u=k-1=11, n=272, F, =3.467.

There are no tables for u=11. Although we can linearly interpolate
between F, values for u=10 and u=12 to find F, for u= 11, it would
only be necessary to do so if F, fell between these two F, values. The F,
value for the smaller u (here 10) will always be larger than that of the larger
u (here 12). Thus, if F, exceeds the F, for u= 10, it must be significant,
and if F, is smaller than F_ for u = 12, it must be nonsignificant. Accordingly,
we use Table 8.3.19 (for a = .05, u = 10) with rown = 27, and find F_ = 1.864.
Since F, = 3.467 is greater than this value, we conclude that the null hypothe-
sis is rejected at a =.05. Again we call to the reader’s attention that we do
not conclude that the population ES used in the power analysis of example
8.4 necessarily obtains (Cohen, 1973). That value was f = .25, hence (Table
8.2.2) the population »” posited was .0588. For the sample, n* is .1083 and
€%, the best estimate of the population 7?, is .0771 (Section 8.2.2),

CHAPTER 9

Multiple Regression and
Correlation Analysis

9.1 INTRODUCTION AND UsE

During the past decade, under the impetus of the computer revolution
and increasing sophistication in statistics and research design among be-
havioral scientists, multiple regression and correlation analysis (MRC) has
come to be understood as an exceedingly flexible data-analytic procedure re-
markably suited to the variety and types of problems encountered in be-
havioral research (Cohen & Cohen, 1983; Pedhazur, 1982; McNeil, Kelly &
McNeil, 1975; Ward & Jennings, 1973). Although long a part of the con-
tent of statistics textbooks, it had been relegated to the limited
role of studying linear relationships among quantitative variables, usually in
the applied technology of social science. For example, in psychology it was
largely employed in the forecasting of success or outcome using psychological
tests and ratings as predictors in personnel selection, college admission,
psychodiagnosis, and the like. In its ““ new look,” fixed model MRC is a highly
general data-analytic system that can be employed whenever a quantitative
“ dependent variable” (Y) is to be studied in its relationship to one or more
research factors of interest, where each research factor (A, B, etc.) is a set
made up of one or more ““ independent variables’ (IVs). The form of the re-
lationship is not constrained: it may be straight-line or curvilinear, general or
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